AGENDA REGULAR MEETING

September 2, 2014 4:30 p.m.

MEMORANDUM

September 2, 2014

In accordance with Section 42 of the City of St. John's Act, the Regular Meeting of the St. John's Municipal Council will be held on Tuesday, September 2, 2014 at 4:30 p.m.

This meeting will be preceded by a Special Meeting to be held on the same day in Conference Room A at 3:30 pom.

By Order

Elaine Henley
City Clerk

AGENDA
 REGULAR MEETING

September 2, 2014

4:30 p.m.

At appropriate places in this agenda, the names of people have been removed or edited out so as to comply with the Newfoundland and Labrador Access to Information and Protection of Privacy Act.

1. Call to Order

2. Approval of the Agenda

3. Adoption of the Minutes - August 25, 2014

4. Business Arising from the Minutes

A. Included in the Agenda

B. Other Matters

5. Notices Published:

a. A Discretionary Use Application has been submitted to the City by Bell Mobility Inc. seeking approval of site design in relation to a telecommunications rooftop site at $\mathbf{4 1 1}$ Stavanger Drive on Hampton Inn \& Suites Hotel.

In accordance with the City of St. John's Siting Protocol for Wireless Facilities, the City of St. John's hereby notifies in the vicinity of 411 Stavanger Drive of the intention of Bell Mobility Inc. to install an antenna system consisting of antennas flush mounted to the building in a gooseneck style, and finished to match the color of the building.
(Submissions received and attached)
b. A Discretionary Use application has been submitted to the City by Bell Mobility Inc. seeking approval of site design in relation to a telecommunications rooftop site at $\mathbf{1 0}$ Factory Lane on the Fort William Building.

In accordance with the City of St. John's Siting Protocol for Wireless Facilties, the City of St. John's hereby notifies residents in the vicinity of 10 Factory Lane of the intention of Bell Mobility Inc. to install an antenna system consisting of antennas mounted to the building façade, and finished to match the color of the building.
(Submission received and attached)
c. A Discretionary Use Application has been submitted by MRA Architecture \& Design requesting approval to establish and operate a national brand coffee shop with drivethru, a service station with convenience store and a drive-thru car washing facility located at Hebron Way. The application satisfies all the requirements of Section 7.30 Drive-Thru Facilities of the St. John's Development Regulations and has the required separation distance from a residential zone. The proposed coffee shop with drive-thru will have a total floor area of $174.2 \mathrm{~m}^{2}$, the service station with convenience store will have a total floor area of $279.0 \mathrm{~m}^{2}$ and the car washing facility will have a total floor area of $159.6 \mathrm{~m}^{2}$ On-site parking will be provided.
(No submissions received)

6. Public Hearings

7. Committee Reports

a. \quad Finance \& Administration Standing Committee Report - August 12, 2014 (Supplementary Report)
b. Public Works Standing Committee Report - August 21, 2014
c. Special Events Advisory Committee Report - August 25, 2014

8. Resolutions

9. Development Permits List (August 21-27, 2014)
10. Building Permits List (August 21-27, 2014)
11. Requisitions, Payrolls and Accounts (Week Ending August 27, 2014)
12. Tenders:
a. Tender - Shop Supplies
b. Tender - Curb Runners
13. Notices of Motion, Written Questions and Petitions
14. Other Business
15. Adjournment

The Regular Meeting of the St. John's Municipal Council was held in the Council Chamber, City Hall at 4:30 p.m. today.

Deputy Mayor Ron Ellsworth presided.

There were present also: Councillors Hann, Hickman, Lane, Breen, Puddister, Galgay, Davis, Tilley and Collins.

Regrets: Mayor O'Keefe and Councillor Puddister.

The City Manager; City Clerk; Deputy City Manager of Public Works; Deputy City Manager of Community Services; Deputy City Manager of Planning, Development \& Engineering; Deputy City Manager of Financial Management; Deputy City Manager of Corporate Services; Acting Chief Municipal Planner; City Solicitor; and Senior Legislative Assistant were also in attendance.

Call to Order and Adoption of the Agenda

SJMC2014-08-25/361R
It was decided on motion of Councillor Breen; seconded by Councillor Collins: That the Agenda be adopted as presented.

The motion being put was unanimously carried.

Adoption of Minutes

SJMC2014-08-25/362R
It was decided on motion of Councillor Tilley; seconded by Councillor Lane: That the minutes of August 11, 2014 be adopted as presented.

The motion being put was unanimously carried.

Notice of Motion

Council considered the notice of motion put forward by Councillor Hickman at the Regular Meeting of Council dated August 11, 2014.

SJMC2014-08-25/363R

It was decided on motion of Councillor Hickman; seconded by Councillor Lane: That Council rescind the decision of July 28, 2014 approving the design of windows put forth by the property owner of 133 Gower Street which contravene the City's Heritage regulations.

The motion being put was carried with Councillor Galgay dissenting.

SJMC2014-08-25/364R

Moved by Councillor Lane; seconded by Councillor Hickman: That Council accept the recommendation of the Heritage Advisory Committee as outlined in its report of July 11, 2014 as follows:

133 Gower St. - Application for Window Installation

The owner of the property has applied to install windows on the front façade which are contrary to the requirements outlined for the heritage area.

The Committee recommends that the configuration of windows proposed by the applicant be rejected as they are contrary to the guidelines for the Heritage Area. The Committee further recommends that the openings conform to those that exist in the adjoining properties to the east and west of the building. The Committee also agreed with the Heritage Officer's proposed window styles and configurations:

- $I^{\text {st }}$ floor: $48 " w \times 60 " h$ (double unit)
- $2^{\text {nd }}$ floor: $30 " w x 60 " h$
- $3^{\text {rd }}$ floor: $30 " w x 56 " h$

The motion being put was carried with Councillor Galgay dissenting.
St. John's Municipal Plan Amendment Number 126, 2014 and St. John's Development Regulations Amendment No. 588, 2014 to allow townhouses throughout Planning Area 4 - Mundy Pond in the Residential Medium Density (R2) Zone - 12 Jensen Camp Road, Ward 3

Council considered a memorandum dated August 20, 2014 from the Director of Planning and Development.

SJMC2014-08-25/365R
It was decided on motion of Councillor Tilley; seconded by Councillor Davis: That the resolution for St. John's Municipal Plan Amendment Number 126, 2014, and St. John's Development Regulations Number 588, 2014, as adopted by Council on July 15, 2014 be approved. These amendments will now be referred by City staff to the Department of Municipal and Intergovernmental Affairs with a request for Provincial registration.

RESOLUTION
 ST. JOHN'S MUNICIPAL PLAN
 AMENDMENT NUMBER 126, 2014

WHEREAS the City of St. John's wishes to allow townhouses throughout Planning Area 4 - Mundy Pond.

BE IT THEREFORE RESOLVED that the City of St. John's hereby adopts the following text amendment to the St. John's Municipal Plan in accordance with the provisions of the Urban and Rural Planning Act.

Amend Part IV "Planning Area 4 - Mundy Pond", Section 4.2.2 ("Residential Medium and High Density" by adding the following sentence:
"However, for properties that do not have frontage along Blackmarsh Road, Council shall have the discretion to introduce zones that permit multi-family housing".

BE IT FURTHER RESOLVED that the City of St. John's requests the Minister of Municipal and Intergovernmental Affairs to register the proposed amendment in accordance with the requirements of the Urban and Rural Planning Act, 2000.

IN WITNESS THEREOF the Seal of the City of St. John's has been hereunto affixed and this Resolution has been signed by the Mayor and the City Clerk on behalf of Council this \qquad day of
\qquad , 2014.

Mayor

Council Adoption

City Clerk

MCIP

I hereby certify that this Amendment has been prepared in accordance with the Urban and Rural Planning Act, 2000.

RESOLUTION ST. JOHN'S DEVELOPMENT REGULATIONS AMENDMENT NUMBER 588, 2014

WHEREAS the City of St. John's wishes to allow townhouses throughout Planning Area 4 - Mundy Pond.

BE IT THEREFORE RESOLVED that the City of St. John's hereby adopts the following text amendment to the St. John's Development Regulations pursuant to the provisions of the Urban and Rural Planning Act.

Amend the Residential Medium Density (R2) Zone table, Section 10.4.1(i) "Townhousing" by deleting the phrase "and except for Planning Area 4 - Mundy Pond, where Townhousing is restricted to Blackmarsh Road and the area bounded by L'Anse aux Meadows Crescent, Captain Whelan Drive, and Columbus Drive" from the Permitted Uses section.

BE IT FURTHER RESOLVED that the City of St. John's requests the Minister of Municipal and Intergovernmental Affairs to register the proposed amendment in accordance with the requirements of the Urban and Rural Planning Act, 2000.

IN WITNESS THEREOF the Seal of the City of St. John's has been hereunto affixed and this Resolution has been signed by the Mayor and the City Clerk on behalf of Council this \qquad day of \qquad , 2014.

Mayor

City Clerk

Council Adoption

MCIP

I hereby certify that this Amendment has been prepared in accordance with the Urban and Rural Planning Act, 2000.

Provincial Registration

The motion being put was unanimously carried

Council considered a memo dated August 19, 2014 from the Director of Planning \& Development regarding the above noted matter.

SJMC2014-08-25/366R

It was decided on motion of Councillor Hann; seconded by Councillor Tilley: That Council adopt the attached resolution for St. John's Municipal Plan Amendment Number 130, 2014, to amend the Residential Low Density, Residential Density, Residential High Density and Residential Downtown LandUse Districts. Further that Council appoint Mr. Stan Clinton, MCIP , a member of the City's commissioner list, as the commissioner to conduct a public hearing on the Municipal Plan Amendment. The proposed date for the public hearing is Thursday, September 18, 2014 at 7 pm at St. John's City Hall.

RESOLUTION
 ST. JOHN'S MUNICIPAL PLAN AMENDMENT NUMBER 130, 2014

WHEREAS the City of St. John's wishes amend the Residential Districts of the St. John's Municipal Plan as follows:

BE IT THEREFORE RESOLVED that the City of St. John's hereby adopts the following text amendment to the St. John's Municipal Plan in accordance with the provisions of the Urban and Rural Planning Act:

1. "Repeal Part III Section 2.3.1 - "Maximum Permitted Density" in the Residential Low Density (RLD) Land Use District and replace it with the following new section:

Lot Area and Density
Minimum Lot Area and/or Maximum Density, in terms of dwelling units per Lot, shall be as set forth in the Zone Requirements of the St. John's Development Regulations.
2. Repeal Part III Section 2.3.2 - "Maximum Permitted Density" in the Residential Medium Density (RMD) Land Use District and replace it with the following new section:

Lot Area and Density

Minimum Lot Area and/or Maximum Density, in terms of dwelling units per Lot, shall be as set forth in the Zone Requirements of the St. John's Development Regulations.
3. Repeal Part III Section 2.3.3 - "Maximum Permitted Density" in the Residential High Density (RHD) Land Use District and replace it with the following new section:

Lot Area and Density

Minimum Lot Area and/or Maximum Density, in terms of dwelling units per Lot, shall be as set forth in the Zone Requirements of the St. John's Development Regulations.
4. Repeal Part III Section 2.3.4 - "Maximum Permitted Density" in the Residential Downtown (RD) Land Use District and replace it with the following new section:

Lot Area and Density

Minimum Lot Area and/or Maximum Density, in terms of dwelling units per Lot, shall be as set forth in the Zone Requirements of the St. John's Development Regulations."

BE IT FURTHER RESOLVED that the City of St. John's requests the Minister of Municipal and Intergovernmental Affairs to register the proposed amendment in accordance with the requirements of the Urban and Rural Planning Act, 2000.

IN WITNESS THEREOF the Seal of the City of St. John's has been hereunto affixed and this Resolution has been signed by the Mayor and the City Clerk on behalf of Council this $11^{\text {th }}$ day of August, 2014.

Mayor

City Clerk

MCIP

I hereby certify that this Amendment has been prepared in accordance with the Urban and Rural Planning Act, 2000.

The motion being put was unanimously carried.
Proposed rezoning to Apartment Medium Density (A2) 11368 NL. Ltd. on behalf of Northern Property REIT - 146-148 Ladysmith Drive (Ward 5)

Council considered a memorandum dated August 21, 2014 from the Director of Planning and Development.

SJMC2014-08-25/367R

It was decided on motion of Councillor Hann; seconded by Councillor Davis: That along the eastern side of the subject property, the zone boundary designating Open Space lands be shifted to coincide with the new EVA boundary, rezoning a portion of land zoned Open Space (O) to the Apartment Medium Density (A2) Zone. This rezoning can be considered as part of 11368 NL. Ltd./Northern Property REIT application.

The motion being put was unanimously carried.

Notices Published

Council considered the following notices published:
A discretionary use application has been submitted by Rogers Communications Inc. requesting concurrence to construct a telecommunications tower at 175 Conception Bay South By-Pass Road.

In accordance with its obligations, under the Radiocommunication Act and Industry Canada’s Tower Siting Procedures CPC-2-0-3, the City of St. John’s hereby notifies residents in the vicinity of 175 Conception Bay South Bypass Road of Roger's intention to install an antenna system consisting of:

- A forty-five (45) metre high self-support tower;
- A 2.89 m X 2.135 m equipment shelter; and
- A 1.8 metre high steel wire fence surrounding the proposed area.
(One submission has been received)

SJMC2014-08-25/368R

It was decided on motion of Councillor Tilley; seconded by Councillor Lane: That Council approve the above noted applications subject to all applicable City requirements.

The motion being put was unanimously carried.

Finance and Administration Standing Committee Report - August 12, 2014

The Committee considered the following report.

IN ATTENDANCE:

Councillor Danny Breen, Chairperson
Councillor Bruce Tilley
Councillor Bernard Davis
Councillor Jonathan Galgay
Councillor Dave Lane
Councillor Wally Collins
Mr. Robert Bishop, Deputy City Manager, Financial Management
Mr. Paul Mackey, Deputy City Manager, Public Works
Mr. Dave Blackmore, Deputy City Manager, Planning, Development \& Engineering
Ms. Jill Brewer, Deputy City Manager, Community Services
Mr. Sean Janes, City Internal Auditor
Ms. Maureen Harvey, Senior Legislative Assistant

1. Delegation from the East Coast Music Association re: ECMA Awards 2015

The Committee welcomed a delegation from the East Coast Music Association.
The delegation informed the Committee that the East Coast Music Association will host the ECMA Awards during the period April 8-12, 2015. Mr. McLean provided the Committee with gave an in-depth presentation about ECMA and the Awards Program (a copy of which is available from the Office of the City Clerk)

Mr. McLean advised the Committee that the operating budget for the awards is $\$ 1.35$ million of which $\$ 250,000$ will be provided by the Province; $\$ 200,000$ by the Federal Government. He is requesting a subsidy from the City in the amount of $\$ 100,000$ for which the City will receive a comprehensive sponsorship package.

Recommendation

On a motion by Councillor Collins; seconded by Councillor Lane it was moved that the request for an amount of $\$ 100,000$ for the East Coast Music Awards 2015 be directed to the 2015 budget process with a recommendation for approval.

The Committee was in agreement that the Association continue its efforts to secure Mile One or an alternate acceptable venue within the City for the Gala.

2. Memorandum dated July 29, 2014 from Deputy City Manager, Community Services re: Canadian Parking Association Conference, September 27-30, 2014

The Committee considered the above noted memorandum which advised the City of St . John's is hosting the Canadian Parking Association (CPA) Conference, September 27-30, 2014, with an estimated attendance of over 300 delegates. The CPA has requested the City to host a reception at the opening of the Trade Show at the Convention Centre. This reception cannot be held at City Hall due to the number of delegates.

Recommendation:

On a motion put forth by Councillor Davis; seconded by Councillor Galgay: The Committee acknowledges that while it has no financial obligation for the Canadian Parking Association Conference, it is recommended that approval be given for an amount of $\mathbf{\$ 5 , 0 0 0}$ for the Opening Reception.
3. Memorandum dated July 25, 2014 from the Acting City Solicitor re: Policies to be repealed.

The Committee considered the memo which advised the Legal Department has been contacted by the responsible managers with respect to certain Corporate and Operational Policies and whether or not such policies are properly worded and/or reflective of our practices and/or responsibilities.

A. Policy 01-03-01 - Emergency/Disaster Four Wheel Drive Operations

Recommendation

That Policy 01-03-01 entitled Emergency/Disaster Four Wheel Drive Operations be repealed.

B. Policy 03-07-32 - Pursuit of Damages Options - Third Party Insurers vs. WHSCC

Recommendation

That Policy 03-07-32 - Pursuit of Damages Options - Third Party Insurers vs. WHSCC be repealed on the basis redundancy.

C. Policy 08-02-01 - Retaining Walls

Recommendation

That Policy 08-02-01 - Retaining Walls be repealed. A new policy will be drafted with accurately sets out the City's obligations and practices.

4. Request from St. John's Amateur Baseball Association

The Committee entertained a request from the St. John's Amateur Baseball Association for a a hosting/special event grant from the City for the upcoming 2014 Senior Men's National Championships. The purpose of the grant would be to assist in two main areas - field maintenance and the opening banquet/homerun derby.

Recommendation

The Committee recommends approval to provide in-kind support in the form of field maintenance at a cost of approximately $\$ \mathbf{3 , 8 0 0}$ for the $\mathbf{2 0 1 4}$ Men's National Baseball Championships.

SJMC2014-08-25/369R
It was decided on motion of Councillor Breen; seconded by Councillor Lane: that the Finance \& Administration Standing Committee report of August 12, 2014 be adopted as presented with the exception of No. 5 (Request from Clean St. John's) which will be considered under separate cover.

The motion being put was unanimously carried.

SJMC2014-08-25/370R
Moved by Councillor Breen; seconded by Councillor Lane: That approval be given to pay registration in the amount of $\$ 505$ for one member of Clean St. John's to attend the Communities in Bloom National Symposium and Awards Ceremony.

The motion being put was unanimously carried.

Planning and Development Standing Committee Report - August 19, 2014

The Committee considered the following report.
In Attendance: Councillor Tom Hann, Chairperson
Councillor Bruce Tilley
Councillor Danny Breen
Councillor Wally Collins
Neil Martin, City Manager
Dave Blackmore, Deputy City Manager of Planning, Development \& Engineering
Jason Sinyard, Director - Planning \& Development
Lindsay Lyghtle-Brushett - Planner
Maureen Harvey, Senior Legislative Assistant
a. 729 Fowler's Road, Ward 5

Application to Rezone Land to Institutional (INST) Zone and
Proposed Residential Addictions Recovery and Treatment Facility Applicant: Teen Challenge Canada

The Committee considered a memorandum dated August 15, 2014 from the Chief Municipal Planner noting that Teen Challenge Canada has applied to have property situated at 729 Fowler's Road rezoned to the Institutional (INST) Zone. The rezoning is to accommodate conversion of the former Circle Square Ranch children's summer camp to a year-round residential addictions recovery and treatment facility for 25 young men, aged 18 and over.

Recommendation

Moved by Councillor Danny Breen that the application be rejected on the basis that the proposed rezoning and development would not be consistent with the City's planning objectives and would be premature by virtue of the site lacking adequate road access and presently being beyond the natural development of the area.

It was suggested and agreed that Chairman, Councillor Hann, meet with the proponent to encourage Provincial Government participation.
a. Proposed Rezoning from Rural Residential Infill (RRI) Zone and Open Space Reserve (OR) Zone to the Rural Residential Infill (RRI) Zone 361-363 Petty Harbour Road, Ward 5

The Committee considered a memorandum dated August 12, 2014 from the Chief Municipal Planner which noted the property owner has submitted an application to rezone the property situated on 361-363 Petty Harbour Road, along the north side of the road between First Pond and Second Pond in the Goulds.

It was noted that there is no sanitary sewer, storm sewer or water main services for this property. Permitting this amendment to the Municipal Plan and the Development Regulations would be precedent setting for further unserviced residential development.

Recommendation

Moved by Councillor Breen; seconded by Councillor Tilley: That the application be rejected on the basis it is contrary to the Municipal Plan's policies which seek to curb sprawl and new unserviced residential development.
b. 465-467 Main Road

Proposed Rezoning from R1 to R2-Condo (Ward 5)
Applicant: Dynamic Engineering

The Committee considered a memorandum dated August 12, 2014 from the Chief Municipal Planner which outlines the application has been submitted to rezone property located at 465467 Main Road, Goulds, for a thirty (30) townhouse development with a central parking area.

The rezoning adheres to the objectives of the Municipal Plan however, an amendment to the Development Regulations is required. The proposed development would be consistent with the development pattern that currently exists along this portion of Main Road. There are many examples of Commercial, Institutional and Mobile Home Park Zones along Main Road adjacent to the subject property. The Residential Medium Density - Condominium (R2 - Condominium) Zones appears to be appropriate for the area. As a Municipal Plan Amendment is not required, there will be no public hearing.

Recommendation

Moved by Councillor Breen; seconded by Councillor Tilley: That approval be given to the terms of reference for a Land Use Assessment Report and upon subsequent receipt of the report, the application be referred to a public meeting chaired by a member of Council.

Councillor Tom Hann
Chairperson
SJMC2014-08-25/371R
It was decided on motion of Councillor Tilley; seconded by Councillor Collins: That the Planning and Development Standing Committee report of August 12, 2014 be adopted as presented with the exception of No. 1 - Application by Teen Challenge which will be considered under separate cover.

The motion being put was unanimously carried

b. $\quad 729$ Fowler's Road, Ward 5

Application to Rezone Land to Institutional (INST) Zone and
Proposed Residential Addictions Recovery and Treatment Facility
Applicant: Teen Challenge Canada
The Committee considered a memorandum dated August 15, 2014 from the Chief Municipal Planner noting that Teen Challenge Canada has applied to have property situated at 729 Fowler's Road rezoned to the Institutional (INST) Zone. The rezoning is to accommodate conversion of the former Circle Square Ranch children's summer camp to a year-round residential addictions recovery and treatment facility for 25 young men, aged 18 and over.

Recommendation

Moved by Councillor Danny Breen that the application be rejected on the basis that the proposed rezoning and development would not be consistent with the City's planning objectives and would be premature by virtue of the site lacking adequate road access and presently being beyond the natural development of the area.

It was suggested and agreed that Chairman, Councillor Hann, meet with the proponent to encourage Provincial Government participation.

Development Committee Report - August 19, 2014

The Committee considered the above-noted report.
The following matter was considered by the Development Committee at its meeting held on August19, 2014. A staff memo is attached for Council's information.

Planning \& Development File No. CRW1400020
Proposed Crown Land Permission to Occupy for Proposed Access Road
Department of Environment \& Conservation File 1034336
Crown Land Referral for $\mathbf{0 . 8 4}$ Hectares
275 CBS Bypass (Ward 5) - Rural (R) Zone

It is the recommendation of the Development Committee that Council approve the subject Crown Land application. Should the applicant be successful in obtaining the Crown Land Permit, a formal development application must be submitted to the City for review and approval prior to the commencement of any development on the site.

Original Signed
David Blackmore, Deputy City Manager
Chair - Development Committee

DB/sf
Attachment

Date: August 21, 2014
To: \quad His Worship the Mayor and Members of Council
From: Dave Blackmore, Chair, Development Committee; Deputy City Manager; Planning, Development and Engineering

Re: \quad Planning \& Development File No. CRW1400020
Proposed Crown Land Permission to Occupy for Proposed Access Road
Department of Environment \& Conservation File 1034336
Crown Land Referral for 0.84 Hectares
275 CBS Bypass (Ward 5) - Rural (R) Zone

The Provincial Department of Environment and Conservation has referred an application to the City requesting comment for a Crown Land 'Permission to Occupy' regarding the above-referenced property. The applicant intends to use the land to create an access road to the land adjacent, which has been approved for freight storage and laydown area. The property dimensions are 20 mx 420 m .

Recommendation:

Council approve the subject Crown Land application. Should the applicant be successful in obtaining the Crown Land Permit, a formal development application must be submitted to the City for review and approval prior to the commencement of any development on the site.
(Original Signed)
Dave Blackmore
Chair, Development Committee;
Deputy City Manager- Planning, Development and Engineering

SJMC2014-08-25/372R
It was decided on motion of Councillor Hann; seconded by Councillor Breen: That the Development Committee report of August 12, 2014 be adopted as presented.

The motion being put was unanimously carried

Development Permits List

Council considered as information the following Development Permits List for the period of August 7, 2014 to August 20, 2014:

DEVELOPMENT PERMITS LIST

DEPARTMENT OF PLANNING, DEVELOPMENT AND ENGINEERING FOR THE PERIOD OF August 7, 2014 to August 20, 2014

Code	Applicant	Application	Location	Ward	Development Officer's Decision	Date
RES		Home Office for Landscaping Business	26 Myrick Place	5	Approved	$14-08-11$
COM	Pinnacle Engineering Ltd	Office Building	18 Hebron Way	1	Approved	$14-08-11$
RES		Building Lot	7 cape Pine Street	5	Approved	$14-08-11$
COM	Regal Realty Limited	Two 5-Storey Condominium Buildings- Phase 1	$200-232$ Newfoundland Drive	1	Approved	$14-08-11$
RES		Demolition \& Rebuild of Dwelling	5 Linegar Avenue	5	Approved	$14-08-13$
RES	Building Lot	1460 Blackhead Road	5	Approved	$14-08-19$	
COM	10758 Newfoundland Ltd	Circular Driveway COM	Ratan Holdings Inc	Relocation of Entrance	$38-42$ Ropewalk Lane	3
RES		Home Office for Banfield's Snow Clearing \& Lawn Care Inc.	7 Aldergrove Place	5	Approved	$14-08-20$

Building Permits List
Council considered the following Building Permits List:
Building Permits List
Council's August 25, 2014 Regular Meeting

CLASS: COMMERCIAL
653 Topsail Rd
450 Water St
85 a Aberdeen Ave
10 Elizabeth Ave
92 Elizabeth Ave
40 Hebron Way
25 Hebron Way
446 Newfoundland Dr
22 O'leary Ave
16 Stavanger Dr
673 Topsail Rd
421 Torbay Rd
435 Torbay Rd
292 Main Rd
134 Water St
59 Elizabeth Ave
5 Bates Hill
27 Mayor Ave
336 Logy Bay Rd
430 Topsail Rd, 241 Pizza
125 Kelsey Dr
48 Kenmount Rd/Glamour Secrets
236 Water St
34 Ropewalk Lane - Kfc
5 Springdale St., 7th Seadrill
136 Crosbie Rd
45 Hebron Way
18 Hebron Way

Co	Retail Store
Rn	Service Shop
Ms	Retail Store
Ms	Retail Store
Ms	Club
Sn	Retail Store
Ms	Retail Store
Ms	Eating Establishment
Ms	Restaurant
Ms	Retail Store
Sn	Mixed Use
Ms	Retail Store
Ms	Commercial School
NC	Swimming Pool
Co	Service Shop
NC	Accessory Building
Ex	Restaurant
Rn	Commercial School
Rn	Commercial School
Cr	Take-Out Food Service
Rn	Office
Cr	Retail Store
Rn	Bank
NC	Eating Establishment
Rn	Office
Rn	Office
NC	Office
NC	Office

This Week \$ 21,696,528.00

Class: Industrial

Class: Government/Institutional

Class: Residential

7 Ann Harvey Pl - Lot 294
320 Bay Bulls Rd
1403 Blackhead Rd
78 Blackler Ave
78 Blackler Ave
62 Blackmarsh Rd
367 Blackmarsh Rd
130 Bonaventure Ave
34 Burton St
3 Capulet St, Lot 216
126 Cheeseman Dr

NC	Single Detached \& Sub. Apt
NC	Fence
NC	Accessory Building
NC	Accessory Building
NC	Accessory Building
NC	Fence
NC	Patio Deck
NC	Fence
NC	Accessory Building
NC	Single Detached Dwelling
NC	Accessory Building

6 Cherrybark Cres
20 Cherrybark Cres-Lot 216
36 Cherrybark Cres

| NC | Single Detached Dwelling |
| :--- | :--- | :--- |
| NC | Single Detached Dwelling |
| NC | Fence |

Nc Accessory Building
Nc Accessory Building
Nc Patio Deck
Nc Accessory Building
Nc Fence
Nc Patio Deck
Nc Accessory Building
Nc Single Detached \& Sub.Apt
Nc Single Detached \& Sub.Apt
Nc Single Detached Dwelling
Nc Single Detached \& Sub.Apt
NC Single Detached Dwelling
Nc Accessory Building
NC Patio Deck
Nc Fence
Nc Accessory Building
Nc Townhousing
Nc Accessory Building
Nc Patio Deck
Nc Swimming Pool
Nc Patio Deck
Nc Accessory Building
NC Fence
Nc Fence
Nc Patio Deck
NC Fence
NC Fence
Nc Patio Deck
NC Fence
Nc Fence
Nc Fence
Nc Single Detached Dwelling
Nc Single Detached Dwelling
Nc Single Detached Dwelling
Nc Condominium
Nc Accessory Building
Nc Accessory Building
Nc Patio Deck
Nc Patio Deck
Nc Patio Deck
Nc Fence
Nc Patio Deck
Nc Accessory Building
Nc Accessory Building
Nc Fence
Nc Single Detached Dwelling
Nc Accessory Building
NC Single Detached Dwelling
Nc Single Detached Dwelling
NC Single Detached Dwelling
Nc Single Detached \& Sub.Apt
Nc Single Detached \& Sub.Apt
Nc Single Detached Dwelling
Nc Swimming Pool
Nc Accessory Building
Nc Patio Deck
Nc Single Detached Dwelling

1 Point Verde Pl	Cr	Subsidiary Apartment
2 Cheyne Dr	Ex	Single Detached Dwelling
6 Gil Eannes Dr	Ex	Patio Deck
35 Green Acre Dr	Ex	Single Detached \& Sub.Apt
34 Alexander St	Rn	Single Detached Dwelling
196 Bay Bulls Rd	Rn	Single Detached Dwelling
129 Blackmarsh Rd	Rn	Single Detached Dwelling
42 Bristol St	Rn	Fence
11 Cabot St	Rn	Townhousing
1 1/2 Cormack St	Rn	Single Detached Dwelling
6 Gil Eannes Dr	Rn	Swimming Pool
140 Gower St	Rn	Semi-Detached Dwelling
55 Iceland Pl	Rn	Single Detached Dwelling
49 Kenai Cres	Rn	Single Detached Dwelling
73 King's Rd	Rn	Townhousing
32 Mackenzie St	Rn	Single Detached Dwelling
8 Maxse St	Rn	Single Detached Dwelling
51 Nautilus St	Rn	Single Detached Dwelling
12 Nunnery Hill	Rn	Single Detached Dwelling
56 Orlando Pl	Rn	Single Detached Dwelling
20 Peppertree Pl	Rn	Subsidiary Apartment
18 Pilot's Hill	Rn	Townhousing
14 Quidi Vidi Rd	Rn	Single Detached \& Sub.Apt
7 Riverview Ave	Rn	Single Detached Dwelling
79 Rotary Dr	Rn	Single Detached Dwelling
75 Shaw St	Rn	Apartment Building
5 Somerset Pl	Rn	Single Detached Dwelling
337 Southside Rd	Rn	Semi-Detached Dwelling
22 York St	Rn	Townhousing
24 York St	Rn	Townhousing
18 Young St	Rn	Townhousing
31 Young St	Rn	Townhousing
39-41 Young St	Rn	Townhousing
42 Bristol St	Sw	Single Detached Dwelling
94 Old Petty Harbour Rd	Sw	Single Detached Dwelling
3 Organ Pl	Sw	Single Detached \& Sub.Apt
74 Petty Harbour Rd	Sw	Single Detached Dwelling
553 Southside Rd	Sw	Vacant Land
7 Vaughan Pl	Sw	Single Detached Dwelling

This Week \$ 21,835,927.00

Class: Demolition

48 Kenmount Rd-Charm Jewelry	Dm
300 Renmount Rd	Dm

This Week \$ 20,000.00

156 Great Eastern Avenue - your application to expand existing driveway is rejected as to Section 10.10.3(g) of the 1994 Development Regulations.

38 Forest Road - your application for a new driveway is rejected, property must have at least 50% of the frontage as landscaping, mature trees at front of the property are Public Tress and shall be protected from development.

27 New Gower Street - your application for a sign is rejected as to Section $13(\mathrm{~b})$ of the Heritage Area Sign By-Law.

695 Empire Avenue - your application for extension of accessory building is rejected as to Section 8.3.6(2) of the St. John's Development Regulations.

| | Legend | |
| :--- | :--- | :--- | :--- |
| Co Change Of Occupancy | | |
| Cr Chng Of Occ/Renovtns | Sw | Sign |
| Nc New Construction | Ex | Extension |
| Rn Renovations | Dm | Demolition |
| Ms Mobile Sign | | |

YEAR TO DATE COMPARISONS			
August 25, 2014			
TYPE	2013	2014	\% VARIANCE (+/-)
Commercial	\$66,706,000.00	\$96,943,000.00	45
Industrial	\$131,000.00	\$125,000.00	-5
Government/Institutional	\$71,281,000.00	\$77,742,000.00	9
Residential	\$109,192,000.00	\$100,605,000.00	-8
Repairs	\$2,958,000.00	\$3,333,000.00	13
Housing Units (1 \& 2 Family Dwellings)	302	220	
TOTAL	\$250,268,000.00	\$278,748,000.00	11

Respectfully Submitted,

Jason Sinyard, P. Eng., MBA
Director of Planning \& Development

SJMC2014-08-25/373R
It was decided on motion of Councillor Breen; seconded by Councillor Collins: That the recommendations of the Director of Planning and Development with respect to the following Building Permits list for the period August 7, 2014 to August 20, 2014 be approved.

The motion being put was unanimously carried.

Requisitions, Payrolls and Accounts

Council considered the following Requisitions, Payrolls and Accounts report from the Department of Finance:

Weekly Payment Vouchers
For The
Week Ending August 13, 2014

Payroll

Public Works \$ 443.257.80
Bi-Weekly Administration \$ 832,040.52
Bi-Weekly Management \$ 457,710.98
Bi-Weekly Fire Department \$ 688,613.79
Accounts Payable \$4,349,364.52

Weekly Payment Vouchers For The
 Week Ending August 20, 2014

Payroll

Public Works \$ 416,747.36
Bi-Weekly Casual
Accounts Payable
\$11,668,641.87

Total:

\$12,238,648.54

SJMC2014-08-25/374R

It was decided on motion of Councillor Breen; seconded by Councillor Collins: That the following Payrolls and Accounts for the weeks ending August $\mathbf{1 3}^{\text {th }}$ and August $20^{\text {th }}, 2014$ be approved.

Tenders

Council considered the following tenders and staff's recommended bidders who meet the required specifications and the Public Tendering Act:

- Tender - Bannerman Park Pavilion - Redwood Construction Limited for $\$ 163,520.00+$ HST.
- Tender - 2014 Water Transmission Main Replacement Program - Allandale Road / Bonaventrue Avenue -Phase 3(Milbanke Street to Prince Philip Drive) - Coady Construction \& Excavating Ltd. for \$2,616,481.10 (Including HST).

The motion being put was unanimously carried.

SJMC2014-08-25/375R
It was decided on motion of Councillor Breen; seconded by Councillor Collins: That the above-noted tenders be awarded as per staff's recommendations.

The motion being put was unanimously carried.

Memorandum dated August 15, 2014 from City Solicitor re: Taylor's Path

Council considered the above-noted memorandum which recommends approval to acquire an easement which is needed to gain access to other lands for constructing and maintaining a berm.

SJMC2014-08-25/376R

It was decided on motion of Councillor Collins; seconded by Councillor Tilley: That approval be given to acquire an easement at a cost of $\mathbf{\$ 2 , 1 0 0}$ plus legal fees on property located at 21 Taylor's Path.

The motion being put was unanimously carried.
Memorandum dated August 15, 2014 from City Solicitor re: 113 Portugal Cove Road
Council considered the above-noted memorandum which recommends approval to acquire an easement which is needed for a water line in relation to the Water Transmission Line Replacement Project.

SJMC2014-08-25/377R

It was decided on motion of Councillor Davis; seconded by Councillor Galgay: That approval be given to acquire an easement at a cost of $\$ 900$ plus legal fees on property located at 113 Portugal Cove Road.

The motion being put was unanimously carried.

Memorandum dated August 19, 2014 from City Solicitor re: 23 Warford Road

Council considered the above-noted memorandum which recommends approval to acquire an easement which is needed to gain access to other lands for constructing a maintaining a berm.

SJMC2014-08-25/378R

It was decided on motion of Councillor Collins; seconded by Councillor Hickman: That approval be given to acquire an easement at a cost of $\$ \mathbf{3 , 4 7 5}$ plus legal fees on property located at 23 Warford Road.

The motion being put was unanimously carried.

Ratification of E-poll re: Rogers Hometown Hockey Event.

Council considered the results of an e-poll wherein it was recommended by the Finance \& Administration Committee to enter into a partnership arrangement at a cost not exceeding $\$ 15,000$. A majority of Council was in agreement.

SJMC2014-08-25/379R
It was decided on motion of Councillor Galgay; seconded by Councillor Davis: That the e-mail poll re: Rogers Hometown Hockey Partnership be ratified.

The motion being put was unanimously carried.

Councillor Galgay

Councillor Galgay brought forward the matter of a greater presence of signs within the City and requested that where they have been erected without appropriate permits, increased and more stringent enforcement along with more timely removal. Council concurred.

Councillor Galgay made reference to a recent fire in the downtown where security personnel was required to crawl under a fence in order to gain access to the building in question. He requested follow up and a report to ensure such properties are accessible.

Councillor Galgay requested the consideration of staff in evaluating the need for a four way stop at the intersection of Cochrane and Gower Street.

Adjournment

There being no further business the meeting adjourned at 5:48 p.m.

MAYOR

CITY CLERK

NOTICES PUBLISHED

Applications which have been advertised in accordance with the requirements of Section 5.5 of the St. John's Development Regulations and which are to be considered for approval by Council at the Regular Meeting of Council on September 2, 2014

Ref	Property Location/ Zone Designation	Ward	Application Details	Floor Area (square metres)	$\begin{array}{\|c\|} \hline \text { \# of } \\ \text { Employees } \\ \text { (includes the } \\ \text { applicant) } \end{array}$	$\begin{array}{\|c} \text { \# of } \\ \text { On-Site } \\ \text { Parking } \\ \text { Space } \end{array}$	Written Representations Received	Planning and Development Division Notes
1	411 Stavanger Drive Commercial Regional (CR) Zone	1	A Discretionary Use Application has been submitted to the City by Bell Mobility Inc. seeking approval of site design in relation to a telecommunications rooftop site at 411 Stavanger Drive on Hampton Inn \& Suites Hotel. In accordance with the City of St. John's Siting Protocol for Wireless Facilities, the City of St. John's hereby notifies residents in the vicinity of 411 Stavanger Drive of the intention of Bell Mobility Inc. to install an antenna system consisting of: - Antennas flush mounted to the building in a gooseneck style, and finished to match the color of the building.				submissions received (see attached)	The Planning and Development Division recommends approval of the application subject to all applicable City requirements.
2	10 Factory Lane Commercial Office Hotel (COH) Zone	2	A Discretionary Use application has been submitted to the City by Bell Mobility Inc. seeking approval of site design in relation to a telecommunications rooftop site at 10 Factory Lane on the Fort William Building. In accordance with the City of St. John's Siting Protoco for Wireless Facilities, the City of St. John's hereby notifies residents in the vicinity of 10 Factory Lane of the intention of Bell Mobility Inc. to install an antenna system consisting of: - Antennas mounted to the building façade, and finished to match the color of the building.				$\begin{gathered} \text { submission } \\ \text { received } \\ \text { (see attached) } \end{gathered}$	The Planning and Development Division recommends approval of the application subject to all applicable City requirements.

 representations on an application have been received by the City Clerk's Department, these representations have been included in the agenda for the Regular Meeting of Council

Bell Mobility Tower on Hampton Im Suites
Gabrielle Scott
to:
dbreen, JSinyard, planning, henry.klain, jbutt, Harris.J, kevinparsons
2014/08/25 10:05 PM
Hide Details
From: Gabrielle Scott \quad Sort List...
To: dbreen@stjohns.ca, JSinyard@stjohns.ca, planning@stjohns.ca,

Hi ,
1 am a resident of Clovelly on Hyde Park drive and I am opposed to an Application by Bell Mobility to erect an antenna so close to where we live where there are playgrounds, residences, seniors, and a daycare facility.

I believe it is up to Bell Mobility and Industry Canada to show me it is safe, with up to date research, before this application is approved.

Can you please provide this to me-to us the residents in this area?
Thanks,
Gabrielle Scott

This is in response to an application by Bell Mobility to install a cell tower on the roof of the Hampton Inn at 411 Stavanger Drive.

1 have read a number of research papers that question the safety of these towers so close to residential areas. While I am obviously not expert in the field, I would appreciate it if people who are experts in the field could validate that there would be no harmful effects on the nearby daycare, residences, and playground before this application is approved.

When I built my current home in the Stavanger area, the first thing I did before purchasing the lot was to have NL Power meet me at the site with an emissions reader to ensure that the nearby power station didn't pose a threat to my family's health. I think it is reasonable to expect similar information before allowing this tower to be built.

Thanks in advance, Heather Rowe

Re: Bell Mobility Antenna Application - Hamtons Hotel

City Clerk and Council to: Majid Abdi
2014/08/22 01:57 PM Sent by: Elaine Henley

Planning, Jason Sinyard, Ken O'Brien, Karen Chafe, Maureen
Cc: Harvey, Lindsay Lyghtle Brushett, Paul Boundridge, Mark Hefferton, Donna L Mullett

Good Afternoon Ms. Abdi:

We acknowledge receipt of your e-mail concerning the above application.
Your concerns have been forwarded to the City's Department of Planning, Development and Engineering for comment.

Elaine Henley

City Clerk

Majid Abdi
Office of the City Clerk This is related to BellMob.,.
2014/08/21 05:50:11 PM

From:	Majid Abdi
To:	"cityclerk@stjohns.ca" cityclerk@stjohns.ca
Date:	$2014 / 08 / 2105: 50$ PM
Subject:	Bell Mobility Antenna

```
Office of the City Clerk
This is related to BellMobility's application to install the antenna on
Hamptons hotel roof. Thank you for informing us of such application. As the
residents of the neighbourhood we we are not aware of the health effects of
such antennas and therefore are concerned about this. The city should check
with the right authorities to understand the health effects on citizens. We
also do not know of the size and impact on the aesthetics of such
installation. Therefore we cannot really make any statement on this
application unless more info is provided. For instance how could this
installation negatively impact the residents in the 150-m radius.
Best regards,
```

Majid A. Abdi
Hyde Eark Drive,
St. John's, NL
A1A 5G1

Fw: Application by Bell Mobility to Errect a Cell Antenna at 411 Stavanger Drive (Hampton Inn and Suites)

Gerard Doran to: Agenda

Gerard Doran

Development Supervisor
Department of Planning, Development and Engineering
City of St. John's
576-8452
576-8625 fax
----- Forwarded by Gerard Doran/CSJ on 2014/08/27 01:39 PM -----

From:	Jason Sinyard/CSJ
To:	Gerard Doran/CSJ@CSJ
Date:	$2014 / 08 / 2501: 52$ PM
Subject:	Fw: Application by Bell Mobility to Errect a Cell Antenna at 411 Stavanger Drive (Hampton Inn and
	Suites)

Jason

Jason Sinyard, P.Eng., MBA
Director of Planning \& Development
City of St. John's
----- Forwarded by Jason Sinyard/CSJ on 2014/08/25 01:51 PM -----

Third email with further enclosures attached.
Valerie A. Hynes, LL.B., B.Com.
Partner
Roebothan, McKay \& Marshall
P.O. Box 5236

34 Harvey Road, 5th Floor
St. John's, NL A1C 5W1
Telephone: (709) 753-5805
Facsimile: (709) 753-5221
Toll-free: (800) 563-5563

E-mail: vhynes@wrmmlaw.com
Website: www.makethecall.ca
This email communication is CONFIDENTIAL AND LEGALLY PRIVILEGED. If you are not the intended recipient, please notify the sender at the telephone number shown above or by return email and delete this communication and any copy immediately. Thank you. L'information apparaissant dans ce message électronique est légalement PRIVILÉGIÉE ET CONFIDENTIELLE. Si ce message vous est parvenu par erreur, vous êtes en conséquence prié de nous aviser immédiatement par téléphone ou par courriel. De plus veuillez détruire ce message immédiatement. Merci.

From: Valerie Hynes
Sent: Monday, August 25, 2014 1:35 PM
To: 'dbreen@stjohns.ca'; 'JSinyard@stjohns.ca'; 'planning@stjohns.ca';
Cc: John (johnveitch@nl.rogers.com)
Subject: RE: Application by Bell Mobility to Errect a Cell Antenna at 411 Stavanger Drive (Hampton Inn and Suites)

Further enclosure attached.
Valerie A. Hynes, LL.B., B.Com.
Partner
Roebothan, McKay \& Marshall
P.O. Box 5236

34 Harvey Road, 5th Floor
St. John's, NL A1C 5W1
Telephone: (709) 753-5805
Facsimile: (709) 753-5221
Toll-free: (800) 563-5563
E-mail: vhynes@wrmmlaw.com
Website: www.makethecall.ca
This email communication is CONFIDENTIAL AND LEGALLY PRIVILEGED. If you are not the intended recipient, please notify the sender at the telephone number shown above or by return email and delete this communication and any copy immediately. Thank you.
L'information apparaissant dans ce message électronique est légalement PRIVILÉGIÉE ET CONFIDENTIELLE. Si ce message vous est parvenu par erreur, vous êtes en conséquence prié de nous aviser immédiatement par téléphone ou par courriel. De plus veuillez détruire ce message immédiatement. Merci.

From: Valerie Hynes
Sent: Monday, August 25, 2014 1:09 PM
To: 'dbreen@stjohns.ca'; 'JSinyard@stjohns.ca'; 'planning@stjohns.ca';
Cc: John (johnveitch@nl.rogers.com)
Subject: Application by Bell Mobility to Errect a Cell Antenna at 411 Stavanger Drive (Hampton Inn and Suites)

I write in my personal capacity as a resident of 29 Veitch Cres. in the City of St. John's, NL and as a mother of three young children ages 4,7 and 10 years old. Bell Mobility has applied for approval to erect a cell phone antenna/tower atop the Hampton Inn and Suites at 411 Stavanger Drive. I live well within 400 metres of this location. My youngest child attends daycare at Bloomsbury Child Care Centre which is 389 Stavanger Drive or 98 metres from this location. My entire family uses Stavanger Drive Playground for recreation, which is adjacent to 389 Stavanger Drive. So as you can imagine, while we didn't receive notice of the Application we are very much interested in the outcome.

Since learning of the Application I have done some research on the topic of cell towers and the harmful effects of radio frequency radiation (RFR) and electromagnetic fields (EMF). It seems that Health Canada and Industry Canada are far behind in their research and have not been conducting independent research on this topic that has been published. I am enclosing some summary information as well. Further, the research available that has been peer reviewed indicates that there are dangers associated with exposure to radiation which emanates from cell towers. I am attaching to this email enclosures of relevant research, including eight reports and studies showing the harmful effects of such exposure. A significant risk appears to exist to humans and particularly young children who are exposed to EMF and RF radiation over prolonged periods of time.

It seems the closer you are to a cell tower the greater the harmful effects are. I do not want a cell tower or antenna placed 98 meters from where my son spends 8-9 hours of his day (daycare) or lives within 400 metres (our home). I am not a scientist and should not be asked to prove these harmful effects. This is complicated science and I do not represent to understand all of what I have read. However, my neighborhood of Clovelly Trails is full of young children and many more concerned parents and we wanted to be protected from environmental harm.

Rogers Mobility already has a Cell Tower on Stavanger Drive that has been there a long time. I would suggest it is little more than 400 metres from my home, but it is within 400 metres from many homes in Clovelly Trails. The combined exposure if this bell Mobility antenna is approved must be over the legal limits for residents?

Bell Mobility, Industry Canada and Health Canada should be able to show me that this cell tower/antenna does not create a risk to my children and family before the location is approved. The research I have enclosed says otherwise and I am very concerned.

I submit that the City of St. John's should do the right thing and turn down this application until further notice and upon receipt of up to date peer reviewed research that there are no harmful effects on children from prolonged exposure to RFR and EMF radiation. I also ask my political representatives, Danny Breen, Kevin Parsons and Jack Harris to help us protect our children.

Please see enclosed.

Sincerely,
Valerie Hynes and John Veitch

Valerie A. Hynes, LL.B., B.Com.
Partner
Roebothan, McKay \& Marshall
P.O. Box 5236

34 Harvey Road, 5th Floor
St. John's, NL A1C 5W1
Telephone: (709) 753-5805
Facsimile: (709) 753-5221
Toll-free: (800) 563-5563
E-mail: vhynes@wrmmlaw.com
Website: www.makethecall.ca
This email communication is CONFIDENTIAL AND LEGALLY PRIVILEGED. If you are not the intended recipient, please notify the sender at the telephone number shown above or by return email and delete this communication and any copy immediately. Thank you. L'information apparaissant dans ce message électronique est légalement PRIVILÉGIÉE ET CONFIDENTIELLE. Si ce message vous est parvenu par erreur, vous êtes en conséquence prié de nous aviser immédiatement par téléphone ou par courriel. De plus veuillez détruire ce message immédiatement. Merci.

R. Santini. Hearing Report.pdf Enviromental Health Perspectives.pdf Science Direct.pdf

Mobile Telecommunications and Health UK.pdf Hutter et al.pdf

Epidemiologic Evidence Relevant to Radar (Microwave) Effects

John R. Goldsmith
Department of Epidemiology and Health Services Evaluation, Ben-Gurion University of the Negev, Beer Sheva, Israel

Public and occupational exposures to microwave (RF) radiation ars of two main types. The first type of exposures are those connected with military and industrial uses and, to some extent, broadcast exposures. It is this type that most of the data cited in this study draw upon. The second type. cellular telephones and their associated broadcast requirements, have raised concerns about current exposures because of their increasingly widespread use. Four types of effects were originally reported in multiple studies: increased spontaneous abortion, shifts in red and white blood cell counts, increased somatic mutation rates in lymphocytes, and increased childhood, testicular, and other cancers. In addition, there is evidence of generalized increased disability rates from a variety of causes in one study and symptoms of sensitivity reactions and lenticular opacity in at jeast one other. These findings suggest that RF exposures are potentially carcinogenic and heve other health effects. Therefore, prudent avoidance of unneeded exposures is recommended as a precautionary measure. Epiderniologic studies of occupational groups such as military users and air traffic controllers should have high priority because their exposures can be reasonably well characterized and the effects reportad are suitable for epidemiologic monitoring. Additional community studies are needed. - Environ Health Perspect 105(Suppl 6):1679-1587 (1997)

Key words: leukemia epidemiology, brain cancer epidemiology, nonionizing radiation epidemiology, cellular telephones and health, TV and radio broadcast towers, military electronic equipment effects

Introduction

Ir is widely recognized that radiation exposures such as X -rays, gamma radiation, and ingestion of radioisotopes can produce increases in the incidence of cancer in man and animals, although there is disagreement abour dose-response relationships. These rypes of radiation, because their energy is sufficient to cause ionization, are called ionizing radiation. This is distinguished from nonionizing radiation, which includes ultravioles (UV), visible light, 50 to 60 cycle (also called extremely low frequency radiation [ELF]), and radiofrequency or microwave (RF) sadiation (1-4). Conventionally, it was thought that nonionizing radiation was not carcinogenic,
even though there has been evidence of skin carcinogenicity from UV radiation for some time (5). In the last decade, there has been extensive study and evaluation of ELF folJowing evidence that childhood leukemia increased among children who lived in homes in Denver, Colorado, near power lines and distribution facilities (6).

ELF studies have included extensive evaluations of occupational and residential exposures, but there has been considerable difficulty in establishing dose-response relationships or mechanisms (7).

Evaluation of RF exposures was conducted primarily by military- and securityoriented government agencies, and earlier

This paper is based on a presentation at the international Conference on Radiation and Health held 3-7 Novembar 1996 in Bear Shova, israel. Abstracts of these papers were previously published in Public Heelth Reviews 24(3-4):205-431 (1996). Manuscript recaived at EHP 11 March 1997; accepted 2 June 1997.

Address correspondence to Dr. J.R. Goldsmith, Department of Epidemiology and Health Services Evaluation, Faculty of Health Sclences, Ben-Gurion University of the Negev, P.O. Box 853, Beer Sheva, Israel 84120. Telephone: 97276400876 . Fax: 97275277342 . E-mail: gjohn $2 b y$ bumail.bgu.acil

Abbreviations used: AE, eviation electrician's mate(s); ALL acute lymphatic leukemia; ANLL, acute nonlymphatic leukemia; AT, aviation electronics technician(s); ELF, extrersaiy low frequency radiation (50-80 cycles); FM, frequency modulation: FSHSS, Foreign Service Health Status Study luifenfeld Report; FT, fire control technician(s); O / E, observed to expected; $O R$, odds rstlo(s); RD, radarmen; RF, radiofrequency or mierowave; RM, radiomen; RR, relative risk; SIR, standardized incidenca ratios: TV, television: U.S. EPA, U.S. Environmental Protection Agency: UV, ultraviolet.
srudies recently have been reevaluated. Because of the rapid development and use of cellular telephone systems, which involve widespread public exposures, reevaluation of exposure risk becomes urgene. The radiation emanates mainly from handheld devices and from the many broadcast faciliries needed to maintain such systerns. It is generally agreed that the physical attributes of UV, ELF, and RF exposures are sufficiently different so that separate evaluations of the possible risks of each are justified. Nevertheless, some potential mechanisms of biologic reaction and dose-response relationships among different types of subjects and exposures are common to all three exposures. I discuss the types of epidemiologic evidence with possible relevance to evaluation of RF exposures.

Neoplastic responses, if they do occur, may have a long latency period. If one waits for cancer to occur, exposed populations have increased risk for the duration of the Iatency period. Even if cancer risks cannot yet be unequivocally demonstrated, some measure of protection should be taken as early as possible because it may take some time to determine the definitive relationship between RF and cancer.

A second reason for urgency with respect to taking protective measures is that, because of rapid increases in the numbers of persons exposed to increased RF exposures in connection with cellular telephone use, some biologic basis is needed as a guide for prudent protective behavior. It is possible that a sysrem of biologic indicators can be found that would allow identificarion of increased cancer risk. This possibility seems worth exploring.

Originally, heating of tissues by RF was considered the basic mechanism through which radiation affected exposed individuals. Therefore, existing protective principles and practices are built around avoidance of the thermal effects of such exposures. There has been increasing concern that this approach may not be adequate and with this in mind, the International Conference on Non-Thermal Effects of Microwave Radiation was convened in November 1996. The proceedings of this conference are being prepared for publication.

With regard to epidemiologic evidence of radiation, a report published in January 1995 (8) focused primarily on military, industrial, and broadcast exposures. This study was supplemented by the review of Rothman er al. (9) in May 1996, Grayson's
report on brain cancer in U.S. Air Force personnel (10), and by three published community studies of cancers possibly associated with proximity to broadcast facilities (11-13).

This review is invended only to update previous assessments of cancer risk from RF radiation. Like the earlier report (8), is is not intended to be a comprehensive review or a balanced report of all possibly relevant findings. Also, there is no attempt to critically evaluate these findings.

Finally, Swedish government agency assessments of ELF effects led to prudent avoidance policies (14,15), which may be applicable to presently available knowledge about RF. This appears to be an attractive alternative to waiting until the data are convincing enough to achieve agreement on new and enforceable standards.

Passible Effects of

Radiofrequency Radiation

Evidence up to 1994 as reviewed in Goldsmith (8) indicates the likelihood of the following effects from exposure to RP radiation in certain populations: reproductive effects such as increased spontancous abortion, changes in blood counts, increased somatic mutation, and increased incidence of childhood and other cancers. Other findings have suggested effects such as cataract, nonspecific disabilities, and symptoms in sensitive persons (headache, ocular problems, facigue, dizziness, memory impairment, and sleep difficulties).

The Evidence

Reproductive Outcomes

Study of Physiotherapists, OuelletHellstrom and Stewart (16) reported on a study of female physiotherapists who used either RF or short-wave apparatus and were queried about the outcome of pregnancies. The frequency generated by short-wave equipment was 27.12 MHz and by microwave equipment was 915 MHz and 2450 MHz .

The survey was conducted among female members of the American Physiotherapy Association in the United States. Of 11,598 respondents who reported having at least one pregnancy, 6684 (57.6%) reported using short-wave or microwave diathermy. These 6684 women reported 14,989 pregnancies, of which 1791 ended in miscarriages, called case pregnancies. Of the remaining pregnancies with sufficienr data, 12,949 were classified as control pregnancies. Exposure was
defined as occurring if the woman had been using one of the physiotherapy modes during the first trimester of pregnancy and during the preceding 6 months. Cases were matched to controls by mother's age at time of conception and by the number of years elapsed between the pregnancy and the date of filling our the questionnaire. A number of confounders were included, among which was prior fetal loss.

Of the case and control mothers, 11.9 and 9.5%, respectively, were using microwaves during the pregnancy; the odds ratio (OR) for spontaneous abortion increased as the number of exposures increased from 5 or less to 20 or more per month. The trend was significant whether or not prior fetal loss had occurred. For women exposed to short-wave radiation, 22.3% lost their baby prior to the 7ch week of pregrancy, whereas the figure for unexposed women was 24.4%. Of the microwave-exposed women, 47.7% had miscarriages prior to the 7th week of pregnancy compared to 14.5% of nonexposed women.

Measured values of stray emissions near waist level ranged from 0.04 to 16.58 $\mathrm{mW} / \mathrm{cm}^{2}$ for electric fields with shortwave units, and these units produced magneric fields of 0.09 to $8.32 \mathrm{~mW} / \mathrm{cm}$. For microwave diathermy the electric field leakage was from 0.08 to 1.20 mW . Leakage measured 15 cm from the source was as high as $15 \mathrm{~mW} / \mathrm{cm}^{2}$. Duration of the therapist exposures was usually only a few minutes per treatment.

Moscow Staff Study. The exposures of U.S. embassy personnel in Moscow are described in Goldsmith (8), based on Lilienfeld at al., (17) (Table 1). Studies were done among Moscow embassy employecs, staff dependents, and other personnel and compared with similar groups in other Eastern European embassies.

The study known as the Foreign Service Health Status Study (FSHSS) or Lilienfeld Report (17) was designed to compare the experience of employees in the Moscow embassy with those of similar employees in other Eastern European embassies on the
assumption that the latrer were not exposed to RF radiation. There was some evidence that these employees were exposed as well, but the contract officer dismissod the possibility as being based on hearsay. In a meeting with the State Department Contract Officer Dr. Pollack about the submitted draft of the Lilienfeld Report, G. Jacobson noted that the reference to a porential inferility effect in the sutdy might be inappropriate because the experimental work was done at very high doses and there are no controlled human studies (18). According to the minutes of the meeting, "this clause will be modified to reflect the very speculative nature of the reports, but the FSHSS data will be presented as is" (17).

The final report makes no reference to any possible impact on infertility, but it does present some data (Table 1) that show more frequent complications among Moscow workers compared to those from other embassies.

Thus, we are left with higher rates of complications of pregnancy at the Moscow embassy for a problem that originally was thought to affect fertility. It seems most likely relared to or actually to be spontaneous abortion.

Systematic Alterations in Red or White Blood Cell Counts

When radar was first identified as a health risk, Daily (19) reported a statistically significant increase in immature red blood cells among workers exposed to radar. These studies were summarized by Follis et al. (20). Early studies at Lockheed Aircraft (Burbank, CA) by Barron et al. (2I) were later dismissed on the grounds "that there was variation in che interpretations by a laboratory technician" (22). Bach found that rats exposed at $13 \mathrm{~mW} / \mathrm{cm}$ had changes in blood cell counts (23).

Goldoni $(24,25)$ compared the hematological findings in 25 male air traffic control technicians exposed to radar with those for 10 electronic technicians whose work was disrant from a microwave

Table 1. Complications of pregnancy, childbirth, and pueperium (/CD-8, Codes 630-878) among women employees in the Foreign Service Health Status Study (17).

	Ever 0,6		After index ${ }^{\text {a, }, ~}$		
	Moscow	Comparison		Moscow	Comparison
	$19(6 \%)$	$19(3 \%)$		p	
	$11(3.5 \%)$	$9(1,3 \%)$	0.04		
SMBR	1.7	0.67			

Abbreviations: ICD, Intemational Classification of Diseases, 8th Revision; SMBR, standardized morbidity ratio. "Pefers to the initial tours of duty during which exposures occurred. Whether the condition occurred at any time; "Whether tha condition occurred after the initial tour of duty.
source. The radar was in the range of 1250 to 1350 MHz , with a strength varying from 10 to $20 \mu W$. Radar-exposed workers had significantly lower levels of leukocytes and red cells than workers distant from the microwave source. In a fol-low-up study of 49 radar-exposed technicians, thrombocyte and leukocyte counts decreased significantly but stayed within normal limits (25).

A hematologic study of Moscow foreign service workers was submitred to the U.S. government on 7 October 1976 by Tonascia and Tonascia (26). They found, on comparing the data for Moscow-based employees with that from foreign service exams conducted in the United States, that

The differences between the two groups with respect to every parameter except monocytes (\% and counts) are highly statistically significant ($p<0.001$) after appropriate transformation. Specifically the Moscow group had a higher mean hematocrit, the Moscow group had a lower neurrophil percentage, but higher percentages for the ocher three cell types (lymphocytes, eosinophils, and monocytes). The white cell counts are strikingly higher in the Moscow group.
Several statistically significant changes occurred over time in the Moscow group; specifically, mean hematocrit increased and 23 -fold increase in monocyte counr occurred. Neutrophil percentages fell and

Table 2. Results of tests for chromosomal changes in metaphase spreads of lymphocytes cultured in vitro among selected Moscow embassy employeas.

Muttagenic level2	Designator	Subjects, no
5	Extrame	0
4	Severe	6
3.5	Intermediate	5
3	Moderata	7
2.5	Intermediats	5
2	Ovestionable	5
1	Normal	6
Growth failure		2

${ }^{2}$ Grading of mutagenic processes and clinical interpretations of these findings were provided by Dr. G. Jacobson (George Washington University Madical School, Washington, DC), who wrote: "Patients who repeat at level 3 or higher should not reproduce until 6 months after somatic levels have returned to 2 or 1 . Patients at level 4 should be withdrawn from mutsgenic exposure and monitored each month until less than 3 is obtained on two consecutive samples" (18). Dr. Jacobson also wrote, "I feel impelled, as in past reports, to emphasize the necessity to study serial samples on the same individual and when possible to study the subject prior to exposure" (18). Apparently, no such follow-up or serial studies were done.
then rose; the reverse pattern was observed for the lymphocytes (26).

Vukelic er al. (27) studied the effects of RF radiation on 72 physiotherapists and physiatrists in Croatia. They found a significantly positive correlation berween length of service and white cell count, and an association of years of exposure with low red cell count.

Tornquist et al. (28) studied 706 power station workers at 3 -year intervals and found that the white blood cell counts were decreased slightly because of exposures to magnetic fields.

Evidence of Mutational Activity in Human Incubated White Blood Cells

The initial examination of Moscow embassy workers, conducted when it became known they were being irradiazed by Sovier transmitters, was done to study the $\mathrm{pqssible} \mathrm{effects} \mathrm{of} \mathrm{radiation} \mathrm{on} \mathrm{chromo-}$ somes in blood samples (26). Beginning in February 1966, 3 to 4 years after the microwave irradiation was first detecred, samples were taken for chromosomal analysis. Twenty spreads were scored per sample; results are shown in Table 2 (18).

Overexposed Air Traffic Controllers. Garaj-Vrohac et al. (29) examined six men accidentally exposed while repairing microwave devices used for air traffic control in Zagreb. These subjects usually worked alternate days in a microwave field of 1250 to 1350 MHz with power density of $10 \mu \mathrm{~g} / \mathrm{W}$ to $20 \mathrm{~mW} / \mathrm{cm}^{2}$. The accidenral exposure was greater than these figures but by how much is not known. The results of chromosome aberration analysis
during 1984 to 1990 showed no increase in chromosomal abnormalities compared to the control. Table 3 shows tesults for the accidentally exposed subjects.

Two things are clear from this experience: Microwave irradiation can produce genotoxic effects, and recovery can occur with a half-time of about 15 weeks when about one-third of the spreads show aberrations. Both chromosomal and chromatid reactions occur.

It is conventional wisdom to assume that nonionizing radiation cannot produce such changes, but there is evidence that this view is incorrect. For example, cattle in the field exposed in vivo near a large military RF emitter in Skrunda, Latvia (30), showed more positive micronuclei test results than unexposed carte. Bovine lymphocytes in vitro respond to microwave exposure using the same rest (31). Genotoxic changes are found in Chinese hamster cells in vitro (thymidine incorporation and chromosomal and chromatid changes) (32) and in human lymphocytes in vitro (33) using micronuclei tests.

A series of studies from Croatia and Italy have also demonstrated that radar exposures are mutagenic both in vivo and in vitro (29,32-35).

In a paper about the effect of RF radiation on the cell genome (32), the investigators used cultured Chinese hamster cells exposed to 7.7 GHz at power densities of $30 \mathrm{~mW} / \mathrm{cm}^{2}$ for 15,30 , and 60 min . Using tritiated thymidine and autoradiography, the incorporation of thymidine into DNA after a 4 -hr incubation decreased in a stepwise manner according to the length of exposure and almost completely recovered

Table 3. Type and percentage of chromosomal aberrations after accidental exposura to high-power density pulsed RFradiation.

Subject no	Date	Chromatid breaks	Chromosome breaks	Acentrics	Dicentrics	Rings	Total aberrations, \%
1	18/11/1990	2	1	2	1	-	3.0
	5/12/1990	-	,	1	,	-	1.5
2	6/12/1980	-	4	8	4	1	8.5
	25/02/9991	4	1	3	1	-	4.5
3	6/12/1990		3	10	3	-	8.5
	26/02/1991	4	3	3	2	\%	6.0
4	20/12/1990	-	1	2		1	2.0
	16/01/1991	-	3	5	1	1	5.0
5	11/12/1990]	6	48	9	3	33.0
	14/02/1991	1	4	31	6	2	22.0
	13/03/1991	4	7	18	6	1	18.0
	17/04/1991	6	6	6	-	-	9.5
	22/05/1991	3	4	6	2	-	7.5
	206/1991	1	-	5	1	-	3.5
6	20/12/1990	-	4	2	1	-	3.5
	30/01/1991	-	2	1	-	1	2.0

-Chromatid interchange 1.
in 24 hr . In addition, chromosomal aberrations increased stepwise according to the duration of exposure. The background percent abnormal metaphase was 1.7%; with a $15-\mathrm{min}$ exposure it increased to 4.8%, with $30 \mathrm{~min}, 6.3 \%$, and with 60 min, 8.9%. Garaj-Vhrovac er al. (33) report on the relationship between colonyforming ability, chromosome aberrations, and the incidence of micronuclei in V79 Chinese hamster cells exposed to RF radiarion. These authors were able to demonstrate damage to cell genomes and changes in chromosome structure based on observations of structural chromosomal aberrations and micronuclei tests. The exposures used were 7.7 GHz and 30 mW for 15,30 , and 60 min . The structural changes replicated the changes observed in their initial paper. The micronuclei/ 1000 cells were background 0.016 , and with a $15-\mathrm{min}$ exposure, $0.043 ; 30 \mathrm{~min}, 0.050$, and 60 $\mathrm{min}, 0.073$. The authors believe that these results cannor be explained on the basis of cell heating.

In a third paper, Garaj-Vhrovac er al. (34) used human lymphocytes instead of Chinese hamster cells, and a correlation was shown between micronuclei percentages and specific chromosomal aberrations (acentric fragments and dicentric chromosomes). Temperarure was held constant, and an additional level of power densiry of $0.5 \mathrm{~mW} / \mathrm{cm}^{2}$ was added. Its use led to a 2.7% aberration and 1.4% micronuclei compared to control levels of 1.5 and 0.9%.

In another paper the authors also traced the occurrence and repair of chromosomal aberrations in personnel repairing aircraft traffic control radar (29). The signal was ordinatily in the range of 1250 to 1350 MHz with a field strength varying from 10 μW to $20 \mathrm{~mW} / \mathrm{cm}^{2}$. Under ordinary exposure circumstances no long-term trend in chromosomal abnormalities was found. The six overexposed personnel were accidentally exposed to much higher levels, in connection with work on equipment repair.
d'Ambrosio et al. (35) also found genotoxic effects of amplitude modified microwaves on human lymphocytes in culture. The signal was 9 GHz , modulated at 50 Hz with a specific absorption ratio of 90 mW / g and the exposure was for 10 min .

These findings are epidemiologically important because of the need for biological indicators of exposure and also because of the theory that somatic cell mutations lead to increased risk for cancer. The usefulness of such tests as a biological monitor seems clear from the data and the findings

Teble 4. Age-adjusted cancer and leukemia annual incidence rates for malas and females in census tracts with broadcasting towers compared to those without such towers (Honolulu, Hawaii, 1979-1983) and compared to statewide rates per 100,000 (1978-1981).

Area	Males		Females	
	Incidence	SIT9 ${ }^{\text {a }}$	Incidence	SIR ${ }^{\text {a }}$
All site cancer				
Tracts with towers	439.6 (488/ ${ }^{\text {b }}$	$1.45{ }^{*}$	$368.61417)$	$1.27{ }^{*}$
Tracts without towers	318.0 (435)	1.05	246.8 (103)	0.85
Statewide	341.2 (5468)	-	272.4 (4658)	-
Leukemia				
Tracts with towers	15.2 (15)	1.58	7.6 (8)	1.45
Tracts without towers	2.4 (1)	0.27	5.0 (2)	0.97
Statewide	9.4 (163)	-	5.3 (90)	-

* $p<0.01$. *Standardized for age. ${ }^{6}$ Numbers of cases in parentheses. Statewide data ara based on the Surveillance, Epidemiology, and End Results Program Report 1973-1981 (39). Original incidence data given by Goldoni (21) for 5 years.
of excess numbers of mutations among chromosomes in the blood of the group exposed at the Moscow embassy (17).

In 2 prospective study of persons with stable murations, Hagmar et al. (36) found an increase in lymphoreticular cancer, but no such effect was seen in persons with transient changes or changes of a chromatid type. A recent review by Akiyama er al. (37) summarizes the present understanding of the prognostic importance of somatic cell mutation.

Canoer in Children and Others

Study of Broadcast Facilities and Adjacent Populations in Hawaii. A unique opportunity to study the cancer incidence in the vicinity of radio broadcasting towers occurred in Honolulu, Hawaii. This situation existed in part because the hills surrounding Honolulu are a nature preserve, so the radio cowers are located in many of the populated census tracts of the city. The study includes cancer incidence data for 1978 to 1981.

Two State Health Department officals used the State Cancer Registry (38) to compare the cancer incidence of nine census tracts that included broadcast towers with two demographically similar tracts with no towers (39). The U.S. Environmental Protection Agency (U.S. EPA) measured RF radiation at 21 locations and reported that public exposures at 12 of the locations exceeded currently recommended limits. At two outdoor sites, exposures were greater than $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$, but at distances greater than 100 to 150 feet from the towers, the exposure levels generally were below $100 \mu W / \mathrm{cm}^{2}$. U.S. EPA officials stated that RF radiation in Honolulu did not pose an immediate risk to the public but officials did not comment on long-term risk. They suggested
that further studies be done by the Federal Communications Cornmission.

The data for all cancer incidence rates and for leukemia overall for males and Females, adjusted for age, are shown in Table 4. If the data are adjusted by race rather than by age, the standardized incidence ratio (SIR) for total cancer, both sexes, in tracts without towers is 1.07 compared with 1.88 in tracts with towers, the latter being significantly elevated. For leukemia, the SIR is 0.59 for tracts withour broadcasting towers and 2.08 for tracts with broadcasting towers.

The Cbildbood Leukemia Cluster on the Waianae Coast, Havoaii. In 1985, a pediatric oncologist informed the Hawaii Department of Health that he had seen an unusual number of children with leukemia in the small communities of the Waianae coast. This situation was confirmed by the Hawaii Cancer Registry in 1986 (40). In 1990 the department conducted a more detailed investigation and a case-control study. A case was defined as a child under 15 years of age diagnosed with acure leukemia between 1977 and 1990 who had spent at least 25% of his or her lifetime in the area before diagnosis. Fourteen cases met this definition, of which twelve were permanent residents and two had spent 2 to 3 days a week in the area. Based on the state's cancer registry, the number of cases to be expected was about one every 2 years or about seven in 14 years. Seven of the cases occurred during the 3 years 1982 to 1984. After 1985, case incidence returned to expected levels-one case every 2 years (40).

Among the seven cases identified from 1982 to 1984, five were acure nonlymphocytic leukemia (ANLL), whereas sratewide, three of four cases were acute lymphocyric leukemia (ALL). Six of seven cases were girls; childhood leukemia appears to be
somewhat more common in boys. Four of the girls were between 9 and 12 years of age, whereas the peak onser for childhood leukemia is around 3 years of age.

In the case-control study of 14 cases and 56 matched controls of the same sex born within 6 months of the cases studied, no statistically significant risk factors were defined. There were, however, elevated OR for other cases of cancer in the family ($\mathrm{OR}=3.4$ with $95 \% \mathrm{Cl}$ of $0.70-16.41$) and for having ever resided within 2.2 miles of the Lualualei Naval Broadcast Facility and its two low frequency radio rowers (OR 2.2; 95\% CI of 0.65-7.56).

The authors suggest that improper storage of oil may have been associated with risk of benzene exposure, a known adult leukernogen. No adequate environmental measurements were available for radiation or benzene exposure. Some measurements of electric or magnetic fields were made by the U.S. EPA in 1990, but the measurements were made primarily along roads and not in areas where children lived and played. Nine of the fourteen cases were of Hawailan or part-Hawaiian ethnic origin, and there is some evidence that Hawailans and Maoris of New Zealand have lower rates of ALL and higher rates of ANLL than orher ethnic groups.

The authors concluded that "...closeness to the low frequency radio towers at Lualualei Naval Station may have a weak association with leukemia, even though it is not statistically significant. This cannot be considered proof that anything emanaring from the station actually caused the leukemia" (40).

North Sydncy Study. Hacking et al. (11) reported on cancer incidence and mortality in the proximity of television (TV) towers; cancer incidence and mortality for the 1972 to 1990 period for nine municipalities in Norch Sydney, Australia, were collected. Three municipalities were closer to the TV broadcasting facilities than the other six, and hence, exposed to more RF radiation. The calculated power density in the more exposed areas ranged from 8 to $0.2 \mu \mathrm{~W} / \mathrm{cm}^{2}$ at a $4-\mathrm{km}$ radius. At a discance of 12 km , power density was $0.02 \mu \mathrm{~W} / \mathrm{cm}^{2}$. They found that for all ages, there was little difference in incidence of brain cancer. For leukemia, however, the incidence rate ratio for adults was 1.24 (95% CI 1.09-1.40), whereas for children it was $1.58(95 \% \mathrm{Cl}$ 1.07-2.34), with a mortality rate ratio of $2.32(95 \% \mathrm{Cl} 1.35-4.01)$. The authors were unsuccessful in identifying confounders to explain these results.

The signals emitted by the TV towers were 100 kW video amplitude modulated and 10 kW audio frequency modulated on carrier frequencies from 63 to 215 MHz . The authors had no prior knowledge of a possible cluster of leukemia cases near the towers.

United Kingdom Studias. Dolk et al. (12) reported on leukemia incidence near the Sutton Coldfield radio and TV transmitters for the years 1974 to 1986. In addition, they studied adulc leukemia incidence neat 20 high power TV/frequency modulation (FM) transmitters in Great Britain (13). The Surton Coldfield study examined data within a $10-\mathrm{km}$ radius in 10 bands of increasing distance. The innermost area was within 2 km of the transmitter; adult leukemia relative risk (RR) was 1.83 (95% CI 1.22-2.74). Actually, one case lived within 0.5 km when 0.11 km could have been expected on the basis of cancer registry experience and the numbers of person-years of observation. While this results in an RR of 9 , emphasizing location of a single case is likely to represent a poorly defined range of risk (Figure 1). There was a significant decline in risk with increased distance ($p<0.001$) from the rransmitters. Expecred numbers of leukemias in the $10-\mathrm{km}$ zones near transmitters were calculated on the basis of national rates stratified by 5 -year age groups, socioeconomic deprivation quintile, and region.

In a second Dolk et al. (13) study the same procedures were used to evaluate
risks surrounding 20 other broadcast facilities in the UK for the same period; 3305 cases were identified, with an overall observed-to-expected (O/E) ratio of 1.03 (95% CI 1.0-1.07). Decline in risk with distance was significant for all sites combined. Results in this study were similar to those of the Sutton Coldfield study (12). There was no significant excess risk for persons living within 2 km of the transmitters and excess tisk was not greater than 15% in any distance band up to 10 km . However, the decline in risk for adult leukemia with distance from the transmitters was significant ($p<0.05$). Eight of the transmitters broadcast FM and three TV at power equivalent to transmission in the Sutton Coldfield study (12). One of the transmirters, Crystal Palace, was located in an unusually densely populated area and appeared to be associated with almost half the cases of leukemia. In the band between 2 and 3 km from the transmitter the adult leukemia O/E ratio was 1.33. Figure 1 shows some of these gradients for the Sutton Coldfield transmitters and for two other groups of stations, one with greater power than the other.

Rothman et al. (9) tabulated studies that might relate leukemia to occupational or recreational exposures to $R F$ radiation and studies that related such exposures to brain malignancies. The risk ratios for leukemia were >1.0 for 19 studies and ≤ 1 for $\%$ For brain tumors the RR was >1 for 9 studies, and ≤ 1 for 4 .

Figure 1. The $0 / E$ leukemia incidence ratio by distance from TV and FM broadcast towers. The trends are shown for Sutton Coldfield and for two subsets of other such facilities in the United Kingdom for adults more than 15 years of ege for the years 1874 to 1986 . One subset is for facilities broadcasting TV in the range of 870 to 1000 kW and the second includes those with power from 500 to 1000 kW . ${ }^{2}$ The $0 / E$ incidance ratia of 9.0 is based on a single case. Based on Dolk at al. (12, 13).

Grayson (10) reported on brain cancer among U.S. Air Force personnel, and found that rank (socioeconomic factor) was the most important predictor. When this was taken into account, nonionizing radiation exposure was more important than ionizing radiation and microwave exposures more significant that low frequency exposures. The positive association for military rank had 2n OR of 3.30 (95% CI 1.99-5.45) for senior officers. For ionizing radiation, the association is negative. The military-rank-adjusted OR is significantly elevated for RF: 1.38 (95\% CI 1.01-1.90), but not for ELF: 1.28 (CI 0.95-1.74).

Another study of military personnel and radiation exposures was that by Szmigielski (4I), who examined cancer by site among Polish military personnel during the period 1970 to 1989. He found a relationship between exposures to high fiequency (RF radiation) and cancer morbidity. About 3700 of the approximately 128,000 personnel were classified as exposed and data were rabulated for 12 types of cancer and four age groups. The overall cancer morbidity for exposed personnel was $119.1 / 100,000$ per year compared on an age-adjusted basis to 57.6 in the nonexposed group. The greatest O / E ratios were found for chronic myelocytic leukemia, 13.9; myeloblastic leukemia, 8.62; and non-Hodgkin's lymphoma, 5.82.

A cluster of six cases of testicular cancer among traffic policemen using microwave generators suggests that microwave exposures can cause cancer of the testicle (42). Other epidemiologic studies of exposed military personnel point in the same direction (43,44).

Lin et al. (45) collected data on brain cancer deaths among white males for the state of Maryland, and examined occupations stated on the deach certificates Included were 951 brain tumors, of which 370 were glioblastomas, 149 astrocytomas, and 432 had unspecified histology.

Fifty glioma and astrocytoma deaths among workers in occupations with a high probability of electrical exposures were matched by age with a sample of the population by age from the 1979 census. The expected number of such occupations in the general population was about one-third of that observed (18/50) for cases. A case reference study showed that the occupational category of electric or electronic engineer and technician had three times the number of cancer cases as the referent population (18 vs $6 ; p<0.05$). When the specified occupations were ranked by
definite, probable, or possible exposures to electromagnetic fields, the OR for astrocytoma and glioma were $2.15,1.95$, and 1.44, respectively.

Garland et al. (46) studied leukemia among occupational groups with potential electromagnetic field exposure in the U.S. Navy. Because chey studied personnel who were hospicalized while on active duty, the study cannot include personnel with lenkemia of substantial latency or those who were not hospitalized. In fact, one occupational group, electrician's mate(s), showed consistent excess of risk for leukemia.

Follow-up Study of $\mathbf{4 0 , 0 0 0}$ Korean War Naval Personsel In the Robinette et al. (47) study, naval persounel were divided into occupational groups with low and high exposures by the occupational designator for the personnel. Within these two catagories were three occupational classes, shown in Table 5.

Table 5 shows the occupational groups and numbers of cases. Table 6 gives rates for all deaths (per 1000) during the followup period of 1950 to 1974: rates for deaths attributable to disease, malignant disease, and malignancy of the lymphatic and hematopoictic systems. Death rates for the group with the highest exposure, aviation electronics technician(s) (AT), are significantly higher than those for the remaining men for all deaths, disease-related deachs, dearhs from malignancy, and deaths from malignancy of the lymphatic
and hematopoietic systems. Although it was true that this group had a higher mean age at onset of the follow-up study (23.4 years) than the average of the whole group (21.3) this mean age was younger than the average for aviation electrician's mate(s) AE (24.7), a caregory that showed no increase in deaths from any malignancy or from other diseases. The authors adjusted for age, but in doing so combined the AT group with the fire control technician(s) (FT) group, which had a low malignancy rate. These two groups, which were about the same size, had 10 and 1 cases of lymphopoeitic or hematological malignancies, respectively. For this population, compensared disability by body system is shown in Table 7 for the two high-exposure groups compared to the remainder of the population Both numbers and crude rates are given as well as the expected number of cases for the more exposed group based on the daca for the remainder.

Additional Stsdies of Cancer in Cbildren and Otbers. Among the many tabulations from the Lilienfeld report (18), those for data abour leukemia are shown in Table 8, based on data excerpted from the Lilienfeld report by Goldsmith (8). Although the numbers are small, there is significant excess for child dependents in both Moscow and orher embassies, as well as an oxcess for employees and dependents in both locations. Estimated exposures ar the Moscow embassy were from 5 to $18 \mu W / \mathrm{cm}^{2}$.

Table 5. U.S. Neval personnel by occupational category during the Korraan War and deaths by cause group, 1950 to 1974.

	Low exposure			High exposure		
	RM	PD	AE	ET	FT	AT
Number of 1. rsons	9253	10,116	1412	13.078	3298	3733
Total deatt.	296	308	61	441	144	198
From dise.	161	165	22	199	81	77
Frommali - 1 - tdisease	39	47	8	65	16	27
From malic rey of the lymphatic and hematopoietic systems	6	14	0	18	1	10

Abbrevietions: ET, electronics technician(s); RD, radiornan; RM, radarman. Data based on Robinette et al. (47).
Table E. U.S. Naval personnel by occupational category during the Koreen War and crude death rates per 1000 by ceuse group, 1950 to 1874.

	Low exposure			High exposura		
	RM	RD	AE	ET	FT	AT
Number of persons	9253	10.116	1412	13,078	3298	3733
Total death ratas	32.0	30.4	43.2	33.7	43.7	53.0
From disease	17.4	18.3	15.6	15.2	24.6 "	$20.62{ }^{+}$
From malignant disease	4.21	4.65	5.66	4.97	4.85	7.23^{*}
From malignancy of the lymphatic and hematopoiatic systems	0.65	1.38	0.00	1.38	0.3	$2.68{ }^{*}$

*Significantly increased, p<0.05 comparad to less-exposed groups. Data based on Robinette et al, (47). For occupational class definitions see Table 5 and text.

Table 7. Number of U.S. Naval personnel recoiving Veterans Administration compensation in 1976, by diagnostic group, for two high-exposure groups (FT and AT) relative to the low-exposure groups exposed during the Korean War.

Diagnostic group	FI and AI		All others		FT and AT, expected no
	No	Rate/1000	No	Rate/1000	
Musculoskelctal	$119 *$	16.9	403	11.90	83.7
Special sense organs	42	6.0	152	4.49	33.6
Systermatic conditions	5	0.7	7	0.20	1.45
Respiratory	$51 *$	7.3	171	5.05	35.5
Cardiovascular	47^{*}	6.7	142	4.19	29.5
Digestive	55	7.8	229	6.76	47.6
Genitourinary	19	2.7	99°	2.92	20.6
Hemic, lymphatic	3	0.4	10	0.30	2.08
Skin	58	8.2	227	6.70	47.1
Endocrina	11	1.6	45	1,36	9.55
Neurologic	16	2.3	54	1.60	11.2
Nerves	3	0.4	41	1.21	8.5
Epilepsies	0	-	16	0.47	3.32
Mental conditions	46	6.5	198	5.85	41.1
Other	2	0.3	19	0.56	3.95
Total diagnoses	477**	67.84	-	53.61	376.94
Total populations	7031		33,859		

${ }^{*}$ Significantly increased, $p<0.05$; **significant, $\rho<0.01$. Data based on Robinatte et al. (44).

Tabia B. Leukemia among U.S. embassy employees and child dependents in Moscow and other Eastem European embassies.

Population	Moscow embassy		Other embassiss		Total 0/E
	Observed	Expected	Observed	Expected	
Employees	2	0.8	3	1.7	5/2.5
Child dependents	2	$0.5 *$	3	$0.7 *$	5/1.2*
Total	4	1.3*	6	$2.4 *$	10/3.7*

*Significantly elevated D / E ratio, $p<0.05$. Based on table in Goldsmith (8).

Evidence of Other Health Effects

Lenticular Changes. Toncheva et al. (48) srudied 87 persons working with radar and 150 eye-matched concrols. The radar workers were divided into five risk groups according to frequencies of microwave exposure (200 KHz to 26 GHz) and power density ($8 \mu \mathrm{~W}$ to $300 \mathrm{~mW} / \mathrm{cm}^{2}$).

They found three specific radiation cararacts in persons working with exuremely high microwave exposure. Lens changes were associated with level of exposure in different risk groups. Changes such as opacities and posterior polar defects are criteria for microwave exposure.

Norspecific Disability. In their study of Korean War Veterans, Robinette et al. (47) abtained data for disability by body system in 1976. As noted in a previous analysis (8), the AT workers, those presumed to have received the most radiation exposures, were combined with the lesserexposed FT to make what was designated the high-exposure group.

In the ten categories in Table 7 (categories with five or fewer cancer cases are not included) the high (FT+AT) group is higher than the remaining groups, with lower exposures in nine of ten
body systems (significant by sign test ax $p<0.05$).

The overall disability rate of $67.8 / 1000$ is significantly greater than 43.1 by Poisson criteria. As is apparent from the combination of the two highest exposure job categories and the nature of the job classification procedure as described by the investigators, this analysis probably underestimates the effects of exposure.

Nonspecific Neurological and Sensitivity Reactions. Silverman (49) noted some nonspecific reactions to RF radiation, and a more recent review (50) brings these findings up to date. More research is needed to better define these reactions.

Interpretations

Available data suggest that RF radiation be considered a carcinogenic risk, a position already raken in an internal U.S. EPA document (51) in 1990 when there was much less evidence of the potential harmfulness of RF radiation.

Except for the Moscow staff, which includes both workers and dependents, most of the exposures studied are relevant to occupation. The most relevant to cases of community exposure risks today are
those involving populations living near broadcast facilities. Cellular telephone users have not been exposed in definable numbers for a long enough time petiod for an adequate study to be made of cancer incidence.

However, interpretarions must take into account the report of the Repacholi et al. study (52) of lymphoma-prone mice, who showed a doubling of the incidence of lymphoma over an 18 -month period when exposed to modulated radiation similar to far-field cellular telephone exposures. This initial finding of experimental evidence of cancer from cellular-telephonelike exposures emphasizes the importance of examining epidemiologic evidence of such effects. Possibly the most suitable source for such data would be the more detailed study of exposures of military personnel or air traffic controllers who received definable exposures and have undergone a sufficient period of follow-up. Evaluation of such nonspecific symtoms as headache, sleep disturbances, and unfavorable reproductive outcomes of populations living near broadcast facilities should have priority for community studies.

The evidence may or may not justify more restrictive regulation of occupational exposure; for community exposures, however, the evidence justifies prudent avoidance (14,15). The concept has been presented by a group of Swedish government agencies in response to the evidence concerning ELF exposures. The plan is basically voluntary and stresses education about risks and economic analysis of uncertain risks and the possible costs of their avoidance.

Included among the actions to take under the rubric of prudent avoidance is epidemiologic monitoring (53), a system of standardized health status measurements of presumably reversible effects, which $\mathrm{can}_{\text {, }}$ if unfavorable trends are discerned, become the basis for higher levels of population protection. The availability of a number of porentially reversible biologic responses makes this an unusually attractive possibility.

A second type of action is to provide realistic procedures to minimize the exposures. Shielding the head and face from exposures to the antennae of hand-held cellular telephones, and guidelines for keeping an adequate distance between broadcasting sources and civilian populations, are clearly indicated.

Further work is needed on the possibility of carcinogeniciry in experimental systems of RF exposures. These systems should be separate from evaluations of

ELF, which does not appear to have the same set of effects.

This review casts some doubt on efforts to distinguish ionizing from nonionizing radiation with respect to their health effects. It also raises doubt about the protective role of regulations based solely on the chermal
effects of RF radiation, which is the basis for current standards.

There seems to be some evidence from the Moscow study and community studies in the vicinity of large FM and TV broadcasting facilities that exposures as low as 2 $\mu \mathrm{W} / \mathrm{cm}^{2}$ may have long-term health effects.

A comprehensive and critical review of the epidemiologic dara available on healch risks from RF exposure should be carried out and the reasonable measures for avoidance of the identified risks should be described and evaluated.

REFERENCES

1. Non-Ionizing Radiation: Proceedings of the 3rd International Non-Ionizing Radiation Workshop (Matthes R, ed), 22-26 April 199G, Baden (Vienna), Austria. Oberschleissheim, Germany:International Commission on Non-Ionizing Radiation Protection, 1996.
2. Feychting M, Ahlbom A. Childhood leukemia and residential exposure to weak extremely low frequency magnetic fields. Environ Health Perspect 103(Suppl 2):59-62 (1995).
3. International Commission on Non-Ionizing Radiation Protection, United Nations Environment Programme, WHO. Environmental Health Critcria 137: Electromagnetic Fields (300 Hz to 300 GHz). Genevz: World Health Organization, 1993.
4. United Nations Scientific Committee on the Effects of Atomic Radiation. Ionizing Radiation: Sources and Biological Effects. New York:United Nations, 1982.
5. Scotto J, Fears TR, Gori GB, Measurements of Uitraviolet Radiation in the United States and the Comparisons with Skin Cancer Data. DHEW (NIH) 76/1029. Washington:U.S. Department of Health, Education, and Welfare (National' Cancer Institute), 1976.
6. Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol 109:273-284 (1979).
7. Ahlbom A. A review of the epidemiologic literature on magnetic fields and cancer. Scand J Work Environ Health 14:337-343 (1988).
B. Goldsmith JR. Epidemiological evidence of radiofrequency radiation (microwave) effects on health in military, broadcasting and occupational studies. Int J Occup Environ Health 1:47-57 (1995).
8. Rothman KJ, Chou CK, Funch DP, Dreyer NA. Assessment of cellular telephone and other radio frequency exposures for epidemiological research. Epidemiology 7:291-298 (1996).
9. Graysoni jK . Radiation exposure, socio-economic status and brain tumor risk in the U.S. Air Force: 2 nested case-control Study, Am J Epidemiol 143:480-486 (1966).
10. Hocking B, Gordon I, Grain JL, Hatfield GE. Cancer incidence and mortality and proximity to TV towers. Med J Aust Assoc 165:601-605 (1996).
11. Dolk H, Shaddick G, W/alls P, Grundy C, Thakrar B, Kleinschmirt I, Elliott P. Cancer incidence near radio and television transmitters in Great Britain. I: Sutton Coldfield transmitter. Am J Epidemiol 145:1-9 (1997).
12. Dolk H, Elliott P, Shaddick G, Walls P, Thakrar B. Cancer incidence near radio and television transmitters in Great Britain. Am J Epidemiol 145:10-17 (1997).
13. Aringer L. Unpublished data.
14. Swedish National Board of Occupational Safery and Health; National Board of Housing, Building and Planning; National Elecrrical Safety Board; National Board of Health and Welfare; Radiological Protection Institute. Low Frequency Electrical and Magnetic Fields: The Precautionary Principle for National Authorities: Guidance for Decision-Makers. ADI 478. Stockholm:Swedish National Board of Occupational Health, 1996.
15. Ouellet-Hellstrom R, Stewart WF. Miscarriages among female physiotherapists who report using radio-and microwave
frequency electromagneric radiation Am J Epidemiol 138:775-786 (1993).
16. Lilienfeld AM, Tonascia J, Tonascia S, Libauer CA, Cauthen GM. Foreign Service Health Starus Study: Evaluation of Health Status of Foreign Service and Other Employees from Selected Eastern European Posts. Final Report Contract 6025619073 (NTIS PB-288163). Washington:U.S. Department of State, 1978.
17. Jacobson G. Unpublished data.
18. Daily LE. A clinical study of the results of exposure of laboratory personnel to radar and high frequency radio. U.S. Naval Medical Bullerin 41:1052-1056 (1943). Cited in Steneck NH, Cook HJ, Vander AJ, Kane GL. Origins of U.S, safery scandards for microwave radiation. Science 208:123-127 (1980).
19. Daily LE. A clinical study of the results of exposure of laboratory personnel to radar and high frequency radio. U.S. Naval Medical Bulletin 41:1052 (1943). Cired in Follis RH Jr. Studies on the biological effect of high frequency radiowaves (radar). Am J Physiol 147:281 (1946).
20. Barron CI, Love AA, Baraff AA. Physical evaluation of personnel exposed to microwave emanations. J Aviar Med 22:442-452 (1955). Cired in Steneck NH, Cook HJ, Vander AJ, Kane GL. Origins of U.S. safety standards for microwave radiztion. Science 208:123-127 (1980).
21. Barron CI, Baraff FF. Medical considerations of exposure to microwaves (radar). JAMA 168:1194-1199 (1958). Cired in Steneck NH, Cook H], Vander AJ, Kane GL. Origins of U.S. safery standards for microwave radiation. Science 208:123-127 (1980).
22. Bach S. In: Proceedings of the 4th Tri-Service Conference on the Biological Hazards of Microwave Regulation, 16-18 August 1960, Griffis Air Force Base, Rome, New York. New York:Plenum, 1961; 131-132. Cited in Steneck NH, Cook HJ, Vander AJ, Kane GL. Origins of U.S. safety standards for microwave radiation. Science 208:1230-1237 (1980).
23. Goldoni J. Hematologieal changes in peripheral blood of workers occupationally exposed to microwave radiation. Health Phys 58:205-207 (1990).
24. Goldoni J. Unpublished dara.
25. Tonascia JA, Tonascia S, Unpublished data.
26. Vukelic M, Kontosic I, Jonjic A, Grubisic-Greblow H. Unpublished data.
27. Tornquist S, Berggvist U, Hagman M, Knave B. Unpublished data.
28. Garaj-Vrohac V, Fucic A, Pevalek-Kozlina B. The rate of elimination of chromosomal abertarions after accidental exposure to microwaves. Bioclectrochern Bioenerg 30:319-325 (1993).
29. Balode Z. Assessment of radio-frequency electromagnetic radiation by the micronucleus test in bovine peripheral erythrocytes. Sci Total Environ 180:81-86 (1996).
30. Scarfi MR, Lioi MB, d'Ambrosio G, Massa R, Zeni O, Di Pietro R, Di Benadino D. Genotoxic effects of mitomycin-C and microwave radiation on bovine lymphocytes. Electro Magnetobiol 15:99-107 (1996).
31. Garaj-Vhrovac V, Horvat D, Koren Z. The effect of microwave radiation on the cell genome, Mutat Res 243:87-93 (1990).
32. Garaj-Vhrovac V, Horvar D, Koren Z. The relation between

RADIOFREOUENCY EPIDEMIOLOGY

colony-forming ability, chromosome aberrations, and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res 263:143-149 (1991).
34. Garaj-Vhrovac V, Fucic A, Horvat D. The correlarion between the frequency of micronuclè and specific chromosome aberrarions in human lymphocytes exposed to microwaves. Mutat Res 281:181-186 (1992).
35. d'Ambrosio G, Lioi MB, Massa R, Zeni O, Scarfi MR. Genotoxic effects of amplitude-modulated microwaves on human lymphocytes exposed in vitro under controlled condicions. Electro Magnetobiol 14:157-164 (1995).
36. Hagmar L, Brogger A, Hansteen IL, Heims S, Hogstedt B, Knudsen L, Lambert B, Linnainmaa K, Mirelman F, Hordensen I et al. Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes. Cancer Res 54:2919-2922 (1994).
37. Akiyama M, Umeld S, Kusunoki Y, Kyoizumi S, Nakamura N, Mori T, Ishikawa Y, Yanakido M, Ohama K, Kodama T et al. Somatic cell murations as a possible predictor of cancer. Health Phys 68:643-649 (1995).
38. Surveillance, Epidemiology, and End Results Program, National Cancer Institute. Cancer Incidence and Mortaliry in the United States, 1973-1981. Publ No 85-1837. Bethesda, MD:National Cancer Institute, 1984.
39. Anderson BS, Henderson AK. Unpublished dara.
40. Maskarinec G, Cooper J. Investigation of a childhood leukemia cluster near low frequency radio towers in Hawail [Abstract]. Am J Epidemiol 138:666 (1993).
41. Szmigielski S. Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation. Sci Total Environ 180:9-17 (1996).
42. Davis RL, Mostoff FK. Cluster of testicular cancer in police officers exposed to hand-held radar. Am J Ind Med 24:231-233 (1993).
43. Tarone RE, Hayes HM, Hoover RN, Rosenthal JF, Brown

LM, Pottern LM, Javadpour N, O'Connell KJ, Stutzman RE. Service in Viernam and risk of testicular cancer. J Nad Cancer Inst 83:1497-1499 (1991).
44. Bullman TA, Watanabe KK, Kang HK. Risk of testicular cancer associated with surrogate exposure reasures of Agent Orange exposure among Vietnam veterans on the Agent Orange Registry. Ann Epidemiol 4:1-6 (1994).
45. Lin RS, Dischinger PC, Conde J, Farrell KP. Occupational exposure to electromagnetic fields and the occurrence of brain tumors: analysis of possible associations. J Occup Med 27:413-419 (1985).
46. Garland FC, Shaw E, Gorham ED, Garland CF, White MR, Sinsheimer PJ. Incidence of leukemia in occupations with porential electromagnetic field exposure in United States Navy Personnel. Am J Epidemiol 132:293-303 (1990).
47. Robinetre CD, Silverman C, Jablon S. Effects upon health of occupational exposure to microwave radiation (radar). Am J Epidemiol 112:39-53 (1980).
48. Toncheva R, Zlateve B, Alexov D, Christove R. Unpublished data.
49. Silverman C. Nervous and behavioral effects of microwave radiations in humans. Am J Epidemiol 97:219-224 (1973).
50. Liakouris AGJ. Modulated Microwave Radiation from Soviet Medical Radar, Radiofrequency Sickness and the Lilienfeld Study. Carrboro, NC:Twin Streams Educational Center, 1996.
51. U.S. Environmental Protection Agency. Unpublished dara. Cited in Sibbison JB. USA: Danger from electromagnetic fields. Lancer 336(8707); 106 (1990).
52. Goldsmith JR, ed. Epidermiological Monitoring in Protection from Environmental Health Hazards. Sci Total Environ 32(3):211-363 (1984).
53. Repacholi $M W$, Basten A_{1} Gebski V, Noonan D, Finnie J, Harris AW. Lymphomas in Ey-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Radiat Res 147:631-640 (1997).

Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations

H-P Hutter, H Moshammer, P Wallner and M Kundi
Occup. Environ. Med. 2006;63;307-313
doi:10.1136/oem.2005.020784

Updated information and services can be found at:

These include:

References	This article cites 16 articles, 3 of which can be accessed free at: ifta:/losm.bmijcurnals.com/egileonienilfuli/g3/3/3C7\#BiPL
	2 online articles that cite this article can be accessed at:
Rapid responses	You can respond to this article at:
Email alerting service	Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections Articles on similar topics can be found in the following collections
Occupational Fioalth (1189 articles)
Other Psychiatiy (833 articles)
Sleep Apnea (195 articles)

Notes

To order reprints of this article go to:

To subscribe to Occupational and Environmental Medicine go to:

ORIGINAL ARTICIE

Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations

H-P' Huller, H Moshammer, P Wailner, M Kundi

Sen end of article for
authors' affiliations

Correspondence lo:

Dr H-P Hulier Institule of Environmental Hoalith,
Msdical University of
Vienna, Kinderspitalgasse
15, A-1095 Vienna,
Austria; hans-pfilur.
hutter太্̦univie.oc.at
Accapted
11 November 2005

Beckground: The erection of mobile tolephone base stations in inhabited areas has raised concerns about possible health effects caused by emitted microwaves.
Nieihods: In a cross-sectional study of randomly selected inhabitants living in urban and rural areas for more than one year near to 10 selected base stations, 365 subjects were investigated. Several cognitive tests were performed, and wellbeing and sleep qualify were assessed. Field strength of high-frequency elcctromagnetic fields (HF-EMF) was measured in the bedrooms of 336 households.
\%esulis: Total HF-EMF and eaposure related to mobile telecommunication were far below recommended levels (max. $4.1 \mathrm{~mW} / \mathrm{m}^{2}$). Distance from antennae was $24-600 \mathrm{~m}$ in the rural area and $20-250 \mathrm{~m}$ in the urban area. Average power donsity was slightly higher in the rural area $\left(0.05 \mathrm{~mW} / \mathrm{m}^{2}\right)$ than in the urban area $\left(0.02 \mathrm{~mW} / \mathrm{m}^{2}\right)$. Despite the influence of confounding variables, including fear of adverse effects from exposure to HF-EMF from the base station, there was a significant relation of some symptoms to measured power density; this was highest for headaches. Perceptual speed increased, while accuracy decreased insignificantly with increasing exposure levels. There was no significant effect on sleep quality: Conclusion: Despiie very low exposure to HF-EMF, effects on wellbeing and performance cannot be ruled out, as shown by recently obtained experimental results; however, mechanisms of action of these low levels are unknown.

Hand-held cellular telephones were introduced in the carly 1980s. Due to the relatively blab microwave erposure for users while they are on the telephone, the porential health effects of mobile phones have been studied in recent years. However, exposure to the much lower emissions from mobile phone base stations has been neglected. There have been only two observational pilor investigations, ${ }^{1,-2}$ and one experimental study.'
The World Health Organisation (WHO) has recently recommended insestigating the effects of exposure to emissions from mobile phone base stations to address public concerns.

It has often been argued that if there are detrimental long term effects from high-frequency elcetromagnetic fields (HFEMF) as transmitted by mobile phone base stations, then such effects should have been found near powerful radio and telvision transmitters. This argument is invalid as: (1) there are very few studies on effect: from radio and TV transmitters, ecological and cluster studies on cancer, and studies on sleep and other endpoints; ${ }^{11-12}$ (2) the results of these studies are compatible with the assumption of a moderately elevated risk; and (3) emissions from base stations diffur substantially from those of other sources of HF-EMF.
There are numerous reports from physicians that base stations are associuted with A number of health symptoms in neighbours. However, there s;mptoms might be due to fear about negative effects. Nevertheless there is evidence that long term, lov: leval exposure to HF-EMF may result in a number of symptoms (for example, headaches, fatigue, sle.sp (disorders, memory impainnents)," attributed as microwave sickness syndrome. ${ }^{14}$
This study in estigated the relation between ezpocure from mobile telecommunication and other sources of HF-EMFs and the associations betacen exposure and symptoms.

METHODS

Selection of base stations

The srudy covers urban as well as rural areas in Austria. The clty of Vienna was selected as the urban area while villages in Carinthia represented the rural areas. Two network providers rivere each asked to identify about fire base stations within borh regions that fuklled the following requirements:

- The antenna must have been operating for at least two years
- There had been no protests by neighbours against the base station
- There was no other base station nearby (thls could only be achieved in rural areas)
- Transmission was preferably only in the 900 MHz band.

Twenty one base stations were specified, from which 10 were selected for the study based on inspection of the local conditions (population densily, other sources of exposure).

Selection of study area and participants

Data from tire 10 selected antenna locations, including the antenna diagram, were provided by the network companies. In order to ensure a sufficient gradient of exposure, these data v.ere used to define the study area around the selected base station. The investigation was carried our by trained students and a medical technical assistant in Carinthia and

[^0]| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 20.1 | c.1-6:5 | $\therefore 0.5$ | T value |
| | 15150191 | | | 2) $\%$ |
| Franclas
 Yeort of icritizica | N.
 16(EN 1A) | | 5 Sc
 $201 \approx 0101$ | 2) 24.8 |
| | $10: 50$ | 10 (Et) 1) | 10 (3) | 1) 412 |
| Entelater | 36\% | ces. | 61\% | 0.398 |
| W6an- | 5% | 42% | $4{ }^{40}$ | 0171 |
| [uncyral -i25 | 45.6 | 38 | 410 | 3) ${ }^{\text {\% }}$, 4 |
| Mbriatatas as | 75.5 | 775 | 782 | 0 54: |
| 9ivaus trin tiusi | π, ${ }^{2}$ tor: | | | |

Vienna. Based on poiver calculations, the projected number was 36 subjects for each of the 10 locations.
In Yienna, households were randouly selected from Idephone register entries. Subjects were contacted by telephone. If after threc attempts nu contact could be achieved, the next entry in the telephone list was chosen. Subjects were told that the relationship between environmental factors and health would be investigated. They had to he older than 18 years, have been living in their present house for at least one ycur, and been staying there for a minimum of eight hours a day on average. Refusal was slightly above 40% and mainly due to time constraints. On acceptance of participation an appointment was made for a tisit. In Carinthia the proceduri was different because no elear relation of address to study area could be ensured (houses are not aliways numbered consecutively). Therefore a random selection of houses based on the site plan was performed. Investigators contacted subjects directly in their homes. In the case of acceptance, eithor an appointment for the investigation was made or it was carried out immediately. Rate of rufuzal was somewhint lovere than in the urban area (325). On contact, gendur, age, , lod duration of reaidence in their present house (eligibility criteria) were registered. Nonparticipants were insignificantly more frequently males (47% $\vee 41 \%$) and significantl; younger ($40 \vee 44$ years), and had a significantly shorter time living in their present house (13 v 10 years).

Data collection and masurements

All investigations were done in the homes of the subjects using a laptop computer. Performance tests as well as questionnairss were presented along sith instructions on the screen. Handling was so simple that after it shor introduction all subjects nere able to fulfil the tasks without further assistance by the investigators. The investigntion consisted of the following:

- Sociodemographic data, sources of EMF exposure within the hourehold, regular use of mobile telephones.
- Evaluation of environmental quality, subjective scaling of the impact different environmental factors could hate on the health of the subjects. Among the items listed were trafilic noise, particulate matter, and mobile phone base station. Assumed impact was rated on a five point scale from $0=$ not at all, to $4=$ very strong impact.
- Subjective scaling of symptoms (Zerssen scale). ${ }^{1 s}$ Symptoms were rated on a four point scale from $0=$ not at all, to $3=$ strong. Symptoms of special interest were headaches, 5% mptoms of exhaustion, and circulatory symptoms (see table 4). For analysis, ratings were dichoromised ($0 / 1-3$).
- Investigation of sleeping problems (Pitsburgh sleeping scale)." Problems falling askep and staying asleep vere rated by the participants on a frequency scale ranging from never to more than 3 days a week. The global inde:: is

iss	Expusure cstrscry (niviv/m]			P whe	
	C. 1	$0.1-3.5$	4.5		
Thenves					
		5. 5 (1-4)	54, 11.4	0154 0.354	
	30.00,	33.1311	34049	2,354	
	314 (\%9)	2) 6 (24)	$32+80$	Das	
d'11 manit	0.870438	- 5810 did	Q 56 i3, 17	073%	
dif 5 mont 4	15103	188065	1597037	0 0.	
	156 (9301	155 (6)	- 5210201	${ }^{0} 1988$	
	-10\% 0,581	-111030	-1040501	0.065	
Pelcespal serel					
	$\begin{aligned} & 43 \\ & 401091 \end{aligned}$	$\begin{aligned} & 4011 \\ & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & \text { J. } 8106 \\ & 41203 \end{aligned}$	$\begin{aligned} & 0003 \\ & 0147 \end{aligned}$	
Cherse mimon tal					
Restor ime inase 1	S22 $\mathrm{S}_{2} 17$	211 (139)	2St	0265	
 Hy prise lom atrial toltchiof enctrysio 					

computed as the sum of seven sub-scales (see table 5) with each component scored 0 to 3 (higher score jndicates greater problems).

- Cognitive performance.
- Memor,' lasks consistud of a short term memory test using $1-10$ digit numbers that had to be reproduced immediately after presentation. The score was definced as the highest number of digits correctly reproduced. The assessment of medium term memory was based on 20 simple everyday objects in silhouette dravings presented together for 30 seconds on the screen, After 1,5 , and 15 minutes these items together with 20 distraction items (different for the three tests) were oresented in random sequence, one at a time, and the subjects had to decide whether or not the picture was among those presonted. Each response was followed by immediate feedback, . - ffer each test all objects were again presented for 15 seconds. The score was defined as the number of correct responses. In addition, dprime and response bias (beta) from signal detection analysis were computed (d-prime is the normalised distance between the signal and noise answer distributions, the higher the d-prime, the less likely is confusion between target and distraction items; beta measures the bias to respond "yes" ;ohether it is a target or distraction itern).
- The choice reaction tasi consisted of a random sequence of squares of three different colours (red, green, and yellow) appearing at random locations on the screen. Subjects had to react as fast as possible by pressing a specified button for each colour. The score was definced as the average corruct reaction time across 25 trials.
- Perceptual spced was tested by prosenting two series of 10 letters ("meaningless words") that differed at exactly one position. Eight of these double series were presented in random sequence. Subjects had to find the differing letter under time constraints (maiimum 6 seconds) and place a cursor below it. These position varied between the 3 rd and 7th letters. Score vas defined as the aterage time to achieve the correct solution. In addition, the number of items solved within the time window was computed.

After completion of the questionnaires and tests, dates were arranged for e:posure measurements. Measurements of high frequency EMFS V :ere done by a specialist from a certified centre in Vienna (TGM). A biconic fleld probe (PBA 10200, ARC Scibersdorf) vias usid connected to i spectrum analyser (FSP, Rhodi \& Schwarz). Muasurenments were performed in th. bedioom (this being typically the only place in the house vihere people consistently spend many hours a day). As exposure may var; at this location, in addition to the sum of power densities across all mobile phone frequencics, the maximum exposure from the base station was computed based on measurements of broadcast channels. Broadcast channels (BCCH) operatc all the time at maximum power with all time slots occupied. Hence multiplication of measurements of BCCl by the ratio of the sum of the power of all channels to that of the BCCH results in maximum possiule exposure level, while the sum of BCCH measurements gires the minimum. The former is the result of all channels operating at maximum porar with all time slots occupied, while the latter occurs if no traffic channel is active.

Distance from the antenna was calculated based on the coordinates of the measurement location and the base station. It ranged between 24 m and 600 m in rural areas and between 20 m and 250 m in urban areas. The smaller
range in the latter was due to the vicinity of other base stations and the shadowing effect of high buildings.

Subjects

In tota), 365 subjects were investigated (185 in Vienna and 180 in Carinthia). In some cases EMF measurements were not possible due to the absence of the inhabitants at the arranged date. Therefore, only data from 336 subjects could finally be evaluated.

Subjects were between 18 and 91 years of age (mean 44 SD 16 yecrs). Fifty nine per cent were female. Average duration of residence in the house was 19 (SD 10) years, and subjects stayed for 10 (SD 5) hours a day in the immediate neighbourhood. Overall, six subjects occupied the place only after erection of the base station. . Ill subjects slept normally at home.

Statistical analysis

Staristical evaluation of exposure from the base stations was done by analysis of covariance (. 1 NCOVA) for components of the Pittsburgh Sleeping Scale and performance measurements, and by logistic rcerression analysis for subjective symptome based on the following procedure. First the maximal power density estimates from base station frequencies were classified into three groups: $\approx 0.1 \mathrm{~mW} / \mathrm{m}^{2}$ (approximately up to median), $0.1-0.5 \mathrm{mb} \mathrm{m}^{2} / \mathrm{m}^{2}$ (betvieen median and 3 rd quartile), and $>0.5 \mathrm{~mW} / \mathrm{m}^{2}$. Originally it was planned to define four exposure categeries based on quartiles. However, it turned out that the level of exposure was too low for the two lowest exposure categnrics to be meaningfully discrimsnated and consequently these categories were combined. Average exposure levels were $0.01 \mathrm{~mW} \cdot \mathrm{~m}^{2}, 0.23 \mathrm{~mW} / \mathrm{m}^{2}$, and $1.3 \mathrm{~mW} / \mathrm{m}^{2}$, respectivel; Exposure level, area (rural v urban), and Interaction were included as fised factors, age, sex, regular use of a mobile telephone, and the subjective rating of negative consequences of the base station on health were used as covariables. Normality was assessed by KolmogorovSmirnov tests using Lilliefors p values, homogeneity of variance by Levene's tests. For all analyses the model with separate slopes was first terted. If none of the inturactions with fix factors were significant at the 10% level, the model with homogenous slopes vias computed. In addition, homogeneity of variance-covariance matrices of covariables and dependent tariables across groups v/as tested by Bo: M tests. Unconditional logistic regression was performed using the same corarlables. For all tests a p value belov 0.03 was considered significant. No correction for multiple testing was applied.

RESULTS

Table 1 gives an overview of features of participants across exposure categories. Although noni of the varlables reached statistical significance, the somewhat higher proportion of subjects from the urban area in the lowest exposure category should be noted.
Exposure to high frequency EMFs was generally- low and ranged from 0.0002 to $1.4 \mathrm{~m}: \mathrm{V} / \mathrm{m}^{2}$ for all frequencies between 80 MHz and 2 GHz ; the greater portion of that exposure was from mobile telecommunications (geometric mean 73%), which was betiveen 0.00001 and $1.4 \mathrm{~mW} / \mathrm{m}^{2}$. Maximum levels were betv.een 0.00002 and $4.1 \mathrm{~mW} / \mathrm{m}^{2}$. Overall 5% of the estimated maximum exposure levels were above $1 \mathrm{mlV/}$ m^{2}. Average exposure levels ware slightly higher in the rural area $\left(0.05^{*} / 7.6 \mathrm{~mW} / \mathrm{m}^{2}\right)$ than in the urban area $\left(0.02^{*} /\right.$ $\left.7.1 \mathrm{~mW}, \mathrm{~m}^{2}\right)$.
ivost subjects expressed no strong concerns about adverse health effects of the base station. In the wrban and rural test areas, 65% and 61% respectively stated no concerns at all.

Tighto si［ukuled results of arolysis if ezvaricsicu far spend score of perceptual speed on a riejurnidid zaroble

Sourse ci vo		\＃		F wobls	pvoiva
	Cov＊－2．ad	4	54530	157.1	ç 0
		I	2 cts	cics	0． 313
	Aye	1	216425	$7784{ }^{\circ}$	0000
	Fir	i	G0i9	0010	3020
	Usa of motale plosio	1	$\because 683$	บ边	0592
Mcme elimis	Gambunes！	3	25 50， 2	16： 25	U00
	ores（rucidíwber）	1	$6 \mathrm{CO}, \mathrm{y}$ d8	250	0002
	Cobicigutic	2	$7{ }^{7}$	2828	0 O 01
Iniettikuch		2	¢ $113{ }^{\circ}$	9 ¢ ${ }^{1}$	cups

Table 2 gives an overviek of results from $\therefore N^{\prime} C O V^{\prime} A$ on the different tests of cugnitic priformance for the exposure factor onl 2 ；table 3 sho：：s the full results for the test of perceptual speed．For purceptual speed a tendency for faster reaction in the higher exposure category was found．Omirting the three insignificant covariates irom analysis resulted in a significant $(p=0.009)$ main effect for exposure．Logistic
regression with the median chosen as a cut－off point tas statistically significant．The estimated risk of a value below the median speed score relative to the lowest exposura category was 0.73 （ $95^{1} \% \mathrm{Cl} 0.33$ to 1.53 ）for the second and 0.42 （ $95 \% \mathrm{CI} 0.18$ to 0.98 ）for the third exposure categories． Accuracy of perceptual speed Indicated bj number of correct reactions showed the opposite effect，although not

	atisgury imW／ri9	Po witl） s\％ingivitu	Relotice \％isis	9\％N	5 \％slua
		d	100		0.917
	$0.1-0.5$	68	136		
	0.5	79	306	$122-78$	
	＜01t	17	100		0． $21 / 12$
	$0.1-05$	27	127	ก5－322	
	＊ 0.5	32	15 i	$508-35!$	
Falutations	$=01+$	16	100		03.44
	，1－9	12	［ 4.3	3 $45-25$	
	\％	39	137	Q0l－311	
Toctibur	－1 1	12	：00		000°
	91－1）5	9	4，${ }^{\text {ch }}$	C 19－2 41	
	$\because 05$	26	23%	$04<-527$	
$\mathrm{H}_{2}=$ Pretise	－6it	32	1.64		03＊
	（）：－1）	28	09	536209	
	50	2h	0.57	0	
$5 \cdot 185$	$\therefore 2.1 \dagger$	34	103		0.156
	C $1-6)$ ：	33	105	$0.41-232$	
	－65	40	135	Q6？－597	
Casillormio ur tet	（1） 014	40	107		い01？
	－25	40 82	$\frac{105}{2.5}$	$0+6-263$ $113-557$	
	－ 011	13	100		0039
	21－0．5	17	153	392－357	
	－0s	24	200	（\％）＊リ18	
12x，नix elarc，	＋91i	63	10		Oxes
	4）	63	125	$9 \mathrm{n} 1-28$	
	0\％	58	102		
Lairmat：	$\begin{aligned} & .011 \\ & 01.05 \end{aligned}$	41	187\％	U3：－20	G（4）
	35	51	$2!8$	4 3 $3-467$	
Ticestoes	＜01\％	64	150		0238
	$01-05$	89	177	35d－310	
	－5	知	102		
	$\bigcirc 1+$	＜ 8	$1 \mathrm{SX}_{1}$		0030
	$31-05$	81	1.2	n5s－2．8i	
	C） 5	76	255	1 gJ ¢ 08	
Fexlorg stres－ed	261\％	4.	150		（14．4）
	$01-\bar{y}$	51	167	5：3－3 5	
	． 515	4	0） 71	5：3－1	
	－引け	47	1 101		0 0．30
	i）-1.15	53	$\|2\|$	$\text { ij } E \cdot \cdots z=1$	
	¢． 5	51	11%	－58－254	

 -5)

Sunperent				7) wobe
	- 0.1	0.1-0.3	28.5	
Sblyekte Hzees cuilly	$0.71(0.91$	96010771	109009	036
Slophuswer	276!1)931	9,74 < 10.8	$5.64098)$	is 295
Blagjuivarien,		1.14i.05i	121 (1,09)	¢ Eid
	7,54092)	2\% (195)	a, 1515	gosi
Sliop cidetitasts	(0) (0) 3)	09: [Gobl	¢) 10cil	1) 334
[apumre dvsiuceien	068 (075)	$4.24(6)$	¢ \%2 201	039
3 legp atadrabiler	019,046	$317107 i)$	$02110: 31$	6270
Clital seew	174 位521		59, [421)	(1285
Foratispan (b)	35\%	312	41 x	- 225

to a significant extent. Hence there is some speed-accuracy trade-off.
For subjective symptoms of primary interest, effects of e:posure from the base station are shown in table 4. Many symptoms were more frequent at higher exposure levels; headaches, cold hands or feet, and difficulties in concentrating, and to a lesser degree, tremor, loss of appetite, and feelings of exhaustion shovied increased prevalence after correstion for confounding factors.

Results for sleep quality are shown in table 5. Tvo subscales (sleep efficiency and da;timc dysfunction) showed indications of poorer sleep at higher e:;posure categorics. A highly significant effect of conearns about negative health implications of the based station was found for overall sleep quality (global score), with poorer qualit'> in those concerued. As expected, age also had a significant influence. Without considering the influence of the subjects' concerns about the base station, the effect of exposure v.ould have been statistically significant. Logistic regression analysis with the median score as a cut-off point showed no pronounced effect of inposure ($p=0.131$).

DISCUSSION

Mobile phone base stations easily comply with current guidelines (for example, ICNIRP (Intcrnational Commission on Non-Ionizing Radiation Protection) guldellnes). ${ }^{17}$ Our measurements show that exposure of the public in the vicinity of base stations is indeed low. However, considering all HF -EMF exposures above 80 MHz , mobile telecommunication is responsible for an average of 73% of these exposures. This is consistent with representative measurements in Sv:eden ${ }^{14}$ and the UK. ${ }^{16}$

The present study was conducted to provide answers to intriguing methodological problems of the epidemiological investigation of base stations.

How is it possible to attribure effects to a specific source of HF-EMF? In study areas, exposure from other sources of HFEMFS was from distant transmitters and therefore more or less constant. Effects from these e:pposures will therefore not confound the effects of base stations. As study areas viere selected to guarantee a gradient of exposures from base stations, the only relevant contribution to the variance of HFEMF exposure was from base stations (93\% of variance).
Another problem is the time variation of exposure, depending on the number of connected calls (due to the TDMA (time division muldiple access) mode of the GSM system). of course the best approach would be a long term measurement of exposure, or to use personal "dosimeters". Howerer, there are no such dosimeters available and long, term measurements are not feasible due to ccononnic restrictions ns well as problems of compliance. A possible solution is to conduct a short term measurement at a location where subjects are assumed to spend considerable periods of time (we chose the bedroom), analyse the spectrum of exposure, and select the broadcast channels that are operating at constant maximurn power. Based on these measurements a range of exposures can be computed. We analysed data based on broad categories so that this categorisation leads to almost equal allocation whether "average", minimum, or maximum exposure estimation is used. A broad categorisation was used because of other sources of varlance of expostre (like movements of subjects) that cannot be accounted for.
A further problem is the dynamic development of telecommunication netvzorks. For the present study, w: selected base stations emitting with unchanged features for

Main messoges

- Exprsaine froin mobile phenra basa stulieris is oiders of

 arposure itesin bosa siutions, rei anitioubble is subjucts' faar of haralts elfeets temm these Esurnes.
 more due to fear of تuderiae hectith wiffsizi than actual ехрыsuif.
at least two years. Furthermore, it was important that no other basc station was nearby (which, however, could only be achieved in rural arcas).
Because of the much higher eaposure during telephoning compared to exposure from base stations, it is hardly conceivable that such small additional ciporure could have an effect. However, these exposures have fundamentally different features. E\%posure from the base station will be at low, but mure or less constant levels for many hours a day, especially during the night. Comparing these levels is inappropriate if long term effects actually cxist. If, for example, a subject is using a GSM mobile with a specific energ' absorption rate (SAR) of $0.04 \mathrm{~W} / \mathrm{L} \cdot \mathrm{g}^{20}$ for 10 minutes, this vould be roughly equivalent to a 15 day expusure from a buse station at an exposure level of $1 \mathrm{~mW} \cdot \mathrm{~m}^{2}$ if the principle of time-dose reciprocity is valid. However, it is not known whether this principle holds for exposure to HF-EMFs.

There is no a priori argument why the nuch lovier levels from base stations should have no effect in the presence of widcspread use of mobile telephones. Possible confounding by using a mobile las bien considercd in this study.

Gencrally, ratings wer higher for most symptoms in subjects expressing concerns about health effects from the base station. Subjects twho experlence health problems might search for an explanation in their environment and blame the base station; another explanation would be that subjects with concerns are more anxious and also tend to give a more negative view of their body functions, or that some people generally give quite negatite answers. Irrespective of these explanations there seam to be cffects of exposure that occur independently of the faar of the subjects about the base station affecting their health. This is the case for headaches, cold hands or feet, and difficulties in concentrating, for e.ample. These effects were robust with respect to additional potential confounders (for example, for headaches, inclusion of an indicator of socioeconomic status-years of education and type of occupation-slightly increased the risk estimator for exposure and decreased the p valut from 0.017 to 0.016 ; inclusion of yests of living in the present home and overall rating of environmental qualit: slightly increased the p value to 0.019 ; inclusion of hours staying at home did not change effect estimatcs at all). Interestingly these symptoms as well as some others that tended to be increased at higher exposure levels belong to those attributed to the microwave sickness syndrome. Hoveser, no clear relationship bas been found for sleeping problems that are often mentioned in the public debate. The effect on slecp is dominated by concerns of the subjects of negative health effects of the base station. Many factors are known to influence sleep quality. Only a fiw could be considered in this study. Since some aspects of sleep quality, lile slecp efficienc; showed a tendency for being affected by sxposure, future studiss should attempt to diminate additional coninundert.

Polisy implications

- Daspite very low erristions fiom mokle pirme bese stuitions, niore researit, oncerving the eifocire of radidetrajuercy radiation firaia base stations is indilscliad
- As a preceulioniary meosuie, siting of baso stations

Concerning symptom reporting there are a number of personality factors for which an association has been established, Among these are state unxiery, depression, and negative affectivity. The main question concerning this range of factors is whether they might act as confounders. In discussions of the micronare siciness syndrome, depression has also been mentioned among the possible effects of exposure; confounding is therefore conceivable. Slecp quality, unspecific symptoms, depression, affectivity, and other porsonality characteristics are connected with each otner in a network of relationships such that a clear understanding of the possible long term effects of exposure may only be determined by longitudinal studies.
No influence of the subjects' fear about negative effects of the base station was found for cognitive purformance. Thire was a small but sisnificant reduction of reaction time for perceptional speed at increased exposure levels. It is interesting to note that such facilitating effects have also been reported during short term experimental exposures ${ }^{\circ} 22$ and a stud; in teenagers using mobile phones. ${ }^{11}$ On the other hand, a study' in children chronically exposed to emissions from a radio tower reported increased reaction times and reduced performance in cognitive tasks. We found a reduction of reaction time in adults, but an insignificant decrease of accuracy. Recognition in the medium torm memory task showed a reasonable and incriasing differentiation between target and distraction items and a decreasing response bias over repeated tests, but there was no indication of an influence of exporure from the base station. Furthermore, cognitive performance varies with factors that have not been controlled or considered in thls stady. Indices of socioeconomic status, hovielar, were tested and did not modify: effect size of base station exposure.
The results of this study Indicate that effects of very luw but long lasting expocures to emissions from mobile telephone base stations on wellbeing and health cannot be ruled out. Whether the observed association with subjectile symptoms after prolonged exposure leads to manifest illness remains to be studied.

ACKNOWLEDGEMENTS

This study was supported by the Scientific Mredical Funds of the Mayor of the City of Vienna and the Gov-mment of the County of Carinthia. The assistance of Dr M1 LMathiaschitz Mrs G Pridnig, and Mrs B Piegler is gratefully ackno:vledged.

Authors' effiliations

H-P Hutter, H Moshan:mer, P Wallner, M Kundi, Institule of Environmental Healhi, Medical University of Vienne, Austria
Competing interests: none

[^1]2 Navarra EA, Segura), Portasolés M , ct ol. Tha micrat. ove syndrome: a preliminary study in spoin, Elect,omaznatic Biology and Medicine 2003;22:161-9.
3 Zwamborn A, Vasenn S, van Leerzum S, el al. Efficts of glabof communicolion system rudio-frequency ficlds on wail esing and cognitivs functions on human beings with and without subiective health complaints, TNO-report FEL-03C1 48 . The Hague: TNO Ph;'sics and Elcedronic Lokoralory, 2003.
A World Healih Organisation. Intarnatianal EMF Project, ivgenda for reswarch. htp://wwiN.w.io.int/psh-cmf/rrsrarch/ogenda/en (aces sud 13 June $2(3)=$
5 Haliterg Ō, Johanison O. P. 'ancma incidfnes and F.equency modulation (FiA) bricelcosting. Arch Environ He lifh 2002;57:32-40.
6 Dolk H, Shoddick C , Wolk P, at a. . Cuncer incidence neor radio and television transmitters in Greal Britain, Part I. Sutton Coldfield Transmittar, Am J Epidemiol 1997:145:1-9.
7 Dolk H, Elliot P, Shaddick $G, \epsilon: a l$, Cancur incidence ncar radio and television Iransmithers in Great Brilain, Part II, All high-power trarismitlers. Am J Epidemiol 1997;145:10-17.
8 Hocking B, Gordion IR, Gram AIL, et ul. Cancer incidence and mortality and proximity to TV tower;. Med J Ausi 1996;165:601-5.
Maskarinec G, Cooper J, Suygert L I.rrestigation of increosed incidence in childhood Lukemia near rudio loverss in Hawaii: preliminary observations. I Emiron Paifol Toxial Oncol 19ラ1;13:33-7.
10 Solyin 5, Fchauman J, Merril DVV. Dislanc: and rick meazurci for the onalysis of spatial deta: a stud, of chilct. J: : caness3. Sai s:i $\% 1=d$ 1992;34:769-77.
 epidemizlogical research in the virinity of the short-wave broodcasting area Sct:wereonk urg: what does th. stery tell us? Pioce: wings of the lakernetional Coníronce on Cell Tovii: Sïig. Salzburg, Austria, 7-8 June, 2000;127-32.
F Kolodynski AA, Keladynjka VV. inolor and paychologicol functions of school Khildran li, ing in the areu of the Shumura Radio Location Slation in Latvia. Sci children li ing in the areu of the
Tot Enviren 1996;180:67-93.

13 silverman C. Nervous and behoviorol effects of microwave radiation in humans. Am I Epidamial 1973;97:219-24.
14 Johnson Ulakourl's AG. Ratiofrequancy (RF) sickness in the tilienteld study: an effect of modulakd microwovas? Arch Environ Health 1998;53:236-8.
15 Zerssen D v, Koeller DM. Die Befindlichkeitsskala. Testzuntrale Gältinysn. 1976.

16 Buysse DJ, Reynolds III CF, Monk TH, et al. The Pitsburgh stwp quality in's': a new instrument for prychiorric piactice ond research. Psychiot Res 1989;28:193-213.
17 Intamational Commission on Non-lonizing Radialion Prolection. Guidulines for limiling exposure to time-vorying electric, magnetic, and electromagnetic fields jup to 300 GHz). Heolth Phs 1998;74:494-522.
18 Hamnerius I, Uadrmur Th. Microwave exposure from mobite phones and bare stations in Sweden. Proceedings ef the International Conference on Cell Tower Siling. Salaburg, Austria, 7-8 June, 2000;52-63.
19 Marn SM, Cooper TG, All=n SG, et al, Exposure to radio woves near mabil2 phonc basz stulicrs, NRPB-R321, 2000.
20 Persson T, Törnavik C, Lorsson LE, ef al. GSM mobile phane oulput power disiribution by nstrrark analysis of all colls in som: urban, rural and in-office net\%orks, complemented by lesi phone measurenaents. 2.4h Mueling of tha Biculectromagnetics Sociaty. Quibic, Canoda, Juna, 2002:181-3.
21 Edelslyn N, Oldershaw A. The acute effects of exposure to the electromagne tic Fisld amittad by mobil; phones on human allantion. Nevroreport 2C02;13:119-21.
22 lee T, Ho S, Tsong L_{1}, of cl. Effect on human affuntion of exposure to tha elaztromognotic field emitted by mebila phanes. Neurorepart 2001;12:729-31.
23 Preeco AW, I vi G, Daviss Smith A, et al. Effect of a $915-\mathrm{MHz}$ simulated mobile phone signal an cognifive function in man. Int J Kodiat Biol 1999;75:447-56.

Mobile Telecommunications and Health

Summary of the ECOLOG study for T-Mobile, 2000

Mobile Telecommunications and Health. Read the full ECOLOG report.
Appendix E, research database listing (in German)
In 2000, the same year the Stewart Report was commissioned by the UK Government, T-Mobil in Germany (the parent company of T-Moblle) commissioned a highly-rated independent research Instltute, the ECOLOG Institute in Hanover, to revlew all relevant available research to date with regard to the health risks from moblle telecommunications.

This review of over 220 peer-reviewed and published papers found strong Indicatlons for the cancer-initiating and cancer-promoting effects of high frequency electromagnetic fields used by mobile telephone technology. Experiments on cell cultures at power flux densitles much lower than the guidelines, yielded strong indicatlons for genotoxic affects of these fields, like single and double stranded DNA breaks and damage to chromosomes. The findings that high frequency electromagnetic fields influence cell transformation, cell growth promotion and cell communication also point on a carcinogenic potential of the fields used for mobile telephony. The study also found teratogenic effects (birth deformitles) and loss of fertility in animal studies. Moreover, disruptions of other cellular processes, like the synthesis of proteins and the control of cell functions by enzymes, have been demonstrated.

Numerous experiments on humans as well as on animals proved effects on the central nervous system, which reach from neuro-chemical effects to modifications of the brain potentials and impairments of certaln brain functions. Loss of memory and cogniuive function, for Instance, have been demonstrated by animal experiments. From experiments with volunteers, who were exposed to the fields of mobile telephones, there is clear evidence for Influences on certain cognitive functions. Possible risks for the brain also arise from an increased permeatlitity of the blood-brain bartier to potentially harmful substances, observed in several experiments on animals exposed to mobile telephone fields.

The ECOLOG report also found indicatlons for disruptions of the endocrine and the immune system. High frequency electromagnetic fields cause stress reactions, showing up in an increased production of stress hormones in experimental anlmals and they lead to a reduction of the concentration of the hormone melatonin in the blood of exposed animals and humans. Melatonin has a central control function for the hormone system and the diurnal biological rhythms and it is able to retard the development of certain tumours.

A common observation in many of the studies was the importance of pulse modulation. Pulse modulated fields seemed to have a stronger effect than continuous fields and that in some cases, it was the pulse of a certain frequency which triggered the reaction, and absence of pulse, or pulse of a different frequency, led to less significant effects or no effect at all.

In sum, the ECOLOG report came to dramatically different conclusions than the Stewart Report and called for an immediate downward regulation of the power flux density that should be allowed by the guldellines, by a factor of 1,000 .

Translator's Note

In my translation from the German, I have consistently applied the following evidence categories as defined by ECOLOG-Institut In Apr|l 2003:

ECOLOG Evidence Categorles:
IE evidence (German: Nachwels): consistent results of identical studies are available
ili consistent indication (German: konsistenter Hinweis): (strong) indication from different study designs considering the same (patho)physiological endpoint are available

- strong indication (German: deutlicher Hinweis): consistent results from comparable studies are available
- indication: similar results from comparable studies are avallable

E weak indication: single study results are available

This report and its translation have been misrepresented at times. Here is a description of the circumstances from the original author:

Statement by Dr Hans-Peter Neitzke, ECOLOG-Institute

Andrea Klein

Moblle Telecommunications and Health. Read the full ECOLOG report.							
Appendix E, research database listing (in German)							
Finsic	Era miens	Cimate	cosial	Exentaic	Comact	hesco neve	Iestes
Fomair							

PARLIAMENTARY OFFICE FOR EVALUATION OF SCIENTIFIC AND TECHNOLOGICAL ALTERNATIVES

Hearing of 6 March 2002 at the request of Senators Jean-Louis LORRAIN and Daniel RAOUL

ARGUMIENTS IN FAVOR OF APPLYING THE PRECAUTIONARY PRINCLPLE TO COUNTER THE EFFECTS OF MOBILE PHONE BASE STATIONS

By

Roger SANTINI

Doctor of Science
Lecturer

I-INTRODUCTION.

To allow for the correct functioning of the millions of mobile cellular telephones, thousands of mobile telephone base stations have been sited in Europe and throughout the entire world. In the preponderant digital technology currently on the market, high frequencies (or microwaves - MW) pulsed with extremely low frequencies (ELFs) are utilized. These high frequencies operate in the $900 \mathrm{MegaHertz}(\mathrm{MHz}$) range for the GSM system (Global System for Mobile Communication) and in the 1800 MHz range for the DCS system (Digital Cellular System) ${ }^{(1)}$. Let us note here that these 2 frequency ranges are very close to that of the domestic microwave oven which functions at 2450 MHz .

Of particular note:

- The text that follow's does not pretend to be exhaustive concerning the numerous scientific studies that report the existence of biological effects relating to exposure to microwayes.
- Neither does it tackle the problem of the biological effects of the extremely low frequencies that are present in mobile telephone signals.

While for the users of mobile cellular telephones the MW exposure is in the "near field", for the populations living in the vicinity' of base stations this exposure is in the "far field". (2)

During the "far field" exposure, different factors are liable to modify the level of exposure for the neighboring populations and in particular:

- The distance from the emitting source: at several meters from a base station, one can measure high frequency power densities of several tens of microwatts per
centimeter squared ($\mathrm{uW} / \mathrm{cm} 2$) through $10 \mathrm{uW} / \mathrm{cm} 2$ (6.1 volts per meter $-\mathrm{V} / \mathrm{m}$) at 50 meters $^{(3)}$.
* The fact of whether or not one falls within the principal high frequency lobe situated in front of emitting antennas: this principal lobe carries electromagnetic energy stronger than that of the secondary lobes found on the sides of and behind the antennas.
- The presence of "passive reflectors" in the form of metallic structures (window shutters, garage doors, flights of stairs, etc.) capable of amplifying high frequencies. ${ }^{(4)}$
- Fluctuations in the strength of the signals emitted by base stations as a function of the number of telephone calls being handled by them.
- The presence of other electromagnetic sources in the environment (power lines, electrical transformers, household electrical equipment, etc.) that can interfere with high frequencies from base stations. ${ }^{(5)}$
Measurement of electromagnetic fields in the environment of base stations at any: given moment appears insufficient to accurately describe the level of chronic exposure to high frequency radiation for neighboring inhabitants. One key factor is that the number of antennas present and operating at a given site varies over the course of time according to the needs of different operators.

II. WHY SHOULD THE PRECAUTIONARY PRINCIPLE BE APPLIED TO COUNTER THE EFFECTS OF BASE STATIONS?

Several arguments can be advanced and are developed hereafter:

- Microwave effects have been known and referenced for more than 40 years.
- Exposure to a mobile cellular telephone generates biological effects.
- Biological effects are reported among people living in the vicinity of base stations and TV and radio transmitters.
- Certain countries have already adopted for their populations exposure limits lower than the currently' accepted limits (in France).
- Sensitivity to high frequencies is not the same for all.

1. Microwave effects are known and have been referenced for more than 40 years.

Chronic exposure to microwaves is responsible for, among other things, the appearance of "microwave syndrome" and augments the risk of cancer.

1-1) "Microwave syndrome", also called radiofrequency sickness, has been described since the 1960's by researchers in Eastern countries ${ }^{(6)}$. One recent publication ${ }^{(7)}$ clarifies that this pathology is tied to chronic exposure to pulsed high frequencies, similar to those generated by mobile cellular phone technology.

It is characterized by:

- A debility syndrome (fatigue, initability, nausea, headaches, anorexia, depression).
- A cardiovascular dysfunction syndrome (bradycardia, tachycardia, hypertension or low blood pressure).
- A brain dysfunction syndrome (drowsiness, insomnia, concentration difficulties). Chronic exposure is also associated with dermatological problems (skin allergies, eczema, psoriasis), changes in blood chemistry, disruption of electroencephalograms and reproduction, effects on sense organs, and tumors.

1-2) Carcinogenic risk:

- From 1953 to 1976 the personnel of the American Embassy in Moscow were subjected to a chronic irradiation from microwaves at a mean power density of 1 to $2.4 \mathrm{uW} / \mathrm{cm} 2$ (1.9 to $3 \mathrm{~V} / \mathrm{m}$), with maxima of short durations of 5 to $18 \mathrm{uW} / \mathrm{cm} 2$ (4.3 to $8.2 \mathrm{~V} / \mathrm{m}$) and with frequencies varying from 600 MHz to 9.5 GHz . One study of these personnel evidences an increased risk of leukemia and of uterine cancer ${ }^{(8)}$.
- A study of 9,590 Canadian telecommunications workers underscores a significant increase in the number of melanomas when compared to the general population ${ }^{(9)}$.
- A survey conducted by the American army on 880,000 persons exposed to microwaves reports a significant increase in the risk of brain tumors ${ }^{(10)}$.
- The effects of chronic exposure of Polish servicemen to ultra-short waves associated with microwaves (frequencies from 150 to $3,500 \mathrm{MHz}$) have been studied for 20 years on approximately 120,000 persons. The results obtained show significant increases in the risk of cancers of the blood, esophagus, stomach, colon, skin (melanoma) and brain, for a microwave exposure not exceeding $200 \mathrm{uW} / \mathrm{cm} 2$ (27.4 $\mathrm{V} / \mathrm{m})^{(11)}$.

2. Exposure to a mobile cellular telephone generates biological effects.

2-1) A Swedish-Norwegian epidemiological study of 11,000 mobile cellular telephone users gives evidence to a relationship between the exposure (number and duration of phone calls) and the increase in complaints such as headaches, fatigue, feeling of warmth on the ear ${ }^{(12)}$, etc.

2-2) A French study of mobile phone users reports a significant rise in the frequency of complaints during the phone call such as tingling in the ear, feeling of discomfort, and warmth of the ear. These symptoms relate to duration of the call (>2 min) and the number of calls per day (>2). This study also gives evidence to a greater sensitivity for women to sleep disturbances when compared to men. For the authors the feeling of warmth of the ear represents an alert that should bring about the termination of the phone call ${ }^{(13,14,15)}$.

2-3) Other significant effects were observed during experiments conducted on human volunteers, in particular:

- Disruption of cerebral electrical activity ${ }^{(16)}$.
- Changes in sleep ${ }^{(17)}$.
- Effects on arterial pressure ${ }^{(18)}$.
- Increase in headaches ${ }^{(19)}$, etc.

2-4) Cancer risks.

- In animals:

A significant rise in the risk of lymphoma following exposure to a GSM-type signal was observed in mice ${ }^{(20)}$.

- In man:
- Several publications find no association between mobile phone usage and the risk of cerebral tumors ${ }^{(21-22-23)}$. To the contrary, one study evidences a significant rise in the risk of cerebral tumor linked to mobile phone usage (Relative risk $=2.6$. Confidence interval $=1.02-6.71)^{(24)}$.
- Concerning the eye, one study shows a significant rise (Relative risk $=4.2$, Confidence interval $=1.2-14.5$) in the risk of uveal melanoma in relation to "probable/certain" use of a cellular mobile phone ${ }^{(25)}$.

2-5) COMOBIO Report (Communications Mobiles et Biologie: - Program financed by the Ministries of Research and of Industry).
In rats exposed to GSM-type electromagnetic waves generated by a mobile phone, the COMOBIO Report (Internet site: hip://whiw.sig.enst.fr/comobio) underscores:

- Disturbances to the Blood-Brain Barrier (permeability of the intracranial blood vessels) which could be, according to the authors, at the origin of localized inflammatory processes responsible for the development of migraine headaches in susceptible people.
- A rise in the number of astrocytes (brain cells) translating to a inflammation that could be the sign, according to the authors, of neuron injury.
- Modifications in the quantity and/or the affinity for their receptors of essential brain neurotransmitters (GABA, Dopamine, Glutamate).

Of particular note:

- The COMOBIO study results confirm the known microwave effects on the Blood-Brain barrier, neurotransmitters, and cerebral receptors in various animal species ${ }^{(1)}$.
- GABA is the brain's principal inhibitor neurotransmitter. Its decrease is the origin of diseases such as epilepsy. It is equally implicated in neurological diseases such as Parkinson's Disease and Huntington's Disease.
- Variations in the concentration of Dopamine in the brain are responsible for pathologies such as Parkinson's Disease and schizophrenia.
- Glutamate is the brain's principal exciter neurotransmitter. Its increase can lead to mood changes (irritability, aggression, etc.). It is equally involved in neurological diseases like Parkinson's Disease.

3. Biological effects are reported by persons living in the vicinity of mobile phone base stations and radio/television transmitters.

3-1) Persons in the vicinity of base stations.

According to an Australian government report ${ }^{(26)}$, persons exposed in their homes at 200 meters from a base station complain of symptoms that recall those described in radiofrequency sickness: chronic fatigue, multiple allergies, sleep disturbances, and premature menopause.

The only study that currently exists is French and concems 530 persons living in the vicinity of base stations ${ }^{(27,28)}$. In comparison with the reference group (persons situated at $>300 \mathrm{~m}$ or not exposed to base stations), it gives evidence of a significant rise in the frequency' of certain complaints at a distance of:

- 100 m for irritability, depressive tendencies, memory loss, concentration difficulties, vertigo.
- 200 m for headaches, sleep disturbances, feelings of discomfort, skin problems
- 300 m for fatigue

3-2) Persons living in the vicinity of radio/television transmitters

 Radio/television transmitters generate electromagnetic waves that are essentially ultra short (VHF) and/or high frequencies. Studies concerning these types of transmitters demonstrate biological effects at weak and very weak power densities:- In mice, after 5 successive generations, exposure to an ultra short-wave transmitter (80 MHz) and a high frequency transmitter (900 MHz) and at a power density of 168 to 1.053 nanoWatts per centimeter squared ($\mathrm{nW} / \mathrm{cm} 2-0.8$ to 1.98 V / m) brings about a lowering of fertility and a general impairment of the phy'siological state ${ }^{(29)}$.
- In adults exposed within a radius of 2 km to radio $(30 \mathrm{MHz})$ - and television (1 $\mathrm{GHz})$ transmitters at power densities of $1.3 \mathrm{uW} / \mathrm{cm} 2(2.2 \mathrm{~V} / \mathrm{m})$ for television and $5.7 \mathrm{uW} / \mathrm{cm} 2(4.6 \mathrm{~V} / \mathrm{m})$ for radio, a significant rise in the risk of leukemia and bladder cancer is observed. ${ }^{(30)}$.
- In children exposed within a radius of 12 km to television relay transmitters at ultra short waves (63 to 215 MHz) at power densities from 0.02 to $8 \mathrm{uW} / \mathrm{cm} 2$ (0.07 to $5.4 \mathrm{~V} / \mathrm{m}$), a significant rise in cases of leukemia and deaths from leukemia is reported ${ }^{(31)}$.
- In children exposed to ultra short (154 to 162 MHz) waves pulsed at 24.4 Hz from a radio transmitter at power densities of 0.3 to $1.64 \mathrm{uW} / \mathrm{cm} 2(1.06$ to $7.8 \mathrm{~V} / \mathrm{m})$ when compared to children who were not exposed or were living behind the transmitter, these effects were demonstrated:
- Reduction in memory and attention
- Reduction in motor function
- Slowing of reflexes ${ }^{(32)}$.
- A study conducted around a radio transmitter in Rome gives evidence of a significant rise in mortality from leukemia for persons living within a 3.5 km radius (Relative risk $=2.5$, Confidence interval $=1.07$ to 4.83) and a significant lowering of risk with distance away from the transmitter ${ }^{(33)}$.

4. Some countries have already adopted lower exposure limits for their populations than those currently allowed (in France).

In a 1998 order (decree) Italy adopted an exposure limit of $10 \mathrm{uW} / \mathrm{cm} 2(6.1 \mathrm{~V} / \mathrm{m})$ in place of 450 and $900 \mathrm{uW} / \mathrm{cm} 2(41$ and $58 \mathrm{~V} / \mathrm{m}$) currently allowed in European regulations for the frequencies of 900 and 1800 MHz respectively ${ }^{(34)}$. In December 2000, The Grand Duchy of Luxembourg adopted an exposure limit of $3 \mathrm{~V} / \mathrm{m}^{(35)}$. In Austria, the Salzburg Resolution recommends $0.6 \mathrm{~V} / \mathrm{m}^{(36)}$.

Of particular note:

- Mayors of French towns have taken actions to prohibit the siting of mobile phone base stations at distances less than 300 m from residences.
- In Belgium in a decision of March 6,2000, the National Assembly prohibited the siting of a base station antenna by apply ing the precautionary principle in making mention of the reasonable question of risk for the health the people living nearby.

5. Sensitivity to high frequencies is not the same for all.

In 1995 the French Air Force conducted an epidemiological study in which 30% of the personnel presented with a non-specific neurovegetative syndrome and 10% presented with authenticated clinical signs. Following this study, the National Institute of Research and Safety (INRS) concluded that: "These exists indisputably an individual sensitivity the the effects of radiofrequencies. Undergoing the same exposure, certain individuals can present with clinical disturbances and others not.,"(37)

According to the International Radiation Protection Association (IRPA), this individual sensitivity to radiofrequencies would have a genetic basis ${ }^{(4)}$.

Recent results underscore a greater sensitivity in women to electromagnetic waves generated by mobile phones ${ }^{(14,15)}$ or by a mobile phone base station ${ }^{(28)}$ when compared to men. It is equally apparent that children are more vulnerable that adults due to their developing nervous systems and a more intense absorption of electromagnetic energy by their tissues ${ }^{(2)}$.

II-CONCLUSION.

With regard to the preceding, it is advisable from now on to apply the precautionary principle to counter the effects of mobile phone base stations. Some measures should be put into effect rapidly so as to protect the populations living in the vicinity of base stations. In accordance with the precautionary principle, base stations will not be sited at less than 300 meters from populated places. Antennas will be carefully orientated so that the principal high frequency radiation lobe is not directed toward places (daj care centers, schools, hospitals, and senior citizen centers, etc.) where people are found who are susceptible to being more sensitive to electromagnetic nuisances. This prudent avoidance measure must be applied equally to residential areas reached by microwave beams since certain of their occupants can be "electrosensitive."

Regular measurement of high frequency power densities must be made at different times of day and various times of the year. In base station environments, those living in the vicinity should not be exposed to an average annual power density above 0.1 ${ }^{4 W}!{ }^{\prime} \mathrm{cm} 2(0.61 \mathrm{~V} / \mathrm{m})$. Zones where residents' exposure to high frequencies is above this
amount should be clearly marked (signs at ground level, signs with a signaling system, etc. $)^{(1)}$

A medical follow-up for base station maintenance workers (blood analyses, baseline EEG's and ECG's) is imperative. No base station work site should be entered until the transmitting equipment has been deactivated. For other categories of workers who work in proximity to base stations (elevator maintenance, ventilation maintenance, etc.) it is advisable to post visible warnings about the biological risks and safe distances to respect in relation to base stations.

New microwave frequencies are being developed for mobile telephones. Those very close to microwave oven frequencies (UMTS system in the 2 to 3 GHz range) will contribute, with the buildout of new telecommunications networks (local radio loops, Hertzian bridges, etc.), to the growth of non-ionizing radiation exposure to populations.

IV - BIBLIOGRAPHY

1. SANTINI R. Téléphones cellulaires. Danger? Editions Marco Pietteur. 1998. 208 pages.
2. SANTINI R. Les téléphones cellulaires et leurs stations relais : risques pour la santé ? La Presse Médicale. 1999. 28 : 1884-1886.
3. PETERSEN R.C., TESTAGROSA P.A. Radio-frequency electromagnetic fields associated with cellular radio cell-site antennas. Bioelectromagnetics. 1992. 13: 527542.
4. IRPA. Guidelines on limits of exposure to radiofrequency electromagnetic fields in the frequency range from 100 KHz to 300 GHz . Health Physics. 1988. 54;115-123.
5. LITOVITZ T.A., PENAFIELD L.M., FARREL J.M. et coll. Bioeffects induced by exposure to microwave are mitigated by superposition of ELF noise. Bioelectromagnetics. 1997. 18 : 422-430.
6. GORDON Z.V. Biological effect of microwaves in occupational settings. Hygiene. 1966. Translated from Russian. NASA. TFF 633. 1970.
7. JOHNSON LIAKOURIS G. Radiofrequency (RF) sickness in the Lillienfeld study. An effect of modulated microwaves? Arch. Environm. Health. 1998. 53 : 236-238.
8. GOLDSMITH JR. Epidemiological evidence of radiofrequency radiation (microwave) effects on health in military broad-casting and occupational studies. Int J. Environmental Health, 1995. 1: 47-57.
9. DE-GUIRRE L., THERIAULT G., ITURRA H., PROVENCHER S., CYR D., CASE B.W. Increased incidence of malignant melanoma of the skin in workers in a telecommunication industry. British J. of Industrial Medicine. 1988. 45: 824-828.
10. GRAYSON J.K. Radiation exposure, socioeconomic status and brain tumor risk in the U.S. Air Force : A nested case-control study. Am. J. Epidemiol. 1996. 143: 480486.
11. SZMIGIELSKI S. Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation. Sci. Total Environ. 1996, 180:9-17.
12. SANDSTRÖM M., WILEN J., OFTEDAL G., MILD K.H. Mobile phone use and subjective symptoms experienced by users of analogue and digital mobile phone. Occup. Med. 2001. 51:25-35.
13. SANTINI R., SEIGNE M., BONHOMME-FAIVRE L., BOUFFET S., DEFRANE E., SAGE M. Symptômes rapportés par des utilisateurs de téléphones mobiles. La Presse Médicale. 2000. 29 : 2097.
14. SANTINI R., SEIGNE M., BONHOMME-FAIVRE L., BOUFFET S., DEFRANE E., SAGE M. Symptômes rapportés par des utilisateurs de téléphones mobiles cellulaires. Pathologie Biologie. 2001 (Sous presse).
15. SANTINI R., SEIGNE M., BONHOMME-FAIVRE L., BOUFFET S., DEFRANE E., SAGE M Symptoms experienced by users of digital cellular phones: A study of a French engineering school. Electro and Magnetobiology. 2001. (Sous presse).
16. FREUDE G., ULLSPERGER P., EGGERT S., RUPPE I. Effects of microwaves emitted by cellular phones on human slow brain potentials. Bioelectromagnetics. 1998. 19 : 384-387.
17. MANN K., ROSCHKE J. Effects of pulsed high-frequency electromagnetic fields on human sleep. Neuropsychobiology. 1996. 33:41-47.
18. BRAUNE S., WROCKLAGE C., RACZEK J., GAILUS T., LUCKING Ch. Resting blood pressure increase during exposure to a radio-frequency electromagnetic field. Lancet. 1998. 357 : 1857-1858.
19. CHIA S.E., CHIA H.P., THAN J.S, Prevalence of headach among handheld cellular telephone users in Singapore: A community study. Environ. Health Perspect. 2000. 108: 1059-1062.
20. REPACHOLI M.H., BASTEN A., GEBAKI V., NOONAN D., FIMNIE J., HARRIS A. Lymphoma in $\mathrm{E} \mu-\mathrm{PM}_{1}$ transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Radiat. Res. 1997. 147 : 631-640.
21. INSKIP P.D., TARONE E.R, HATCH E.E., WILCOSKY T.C. et coll. Cellulartelephone and brain tumors. N. Engl. J. Med. 2001. 344 : 79-86.
22. MUSCAT J.E., MALKIN M.G., THOMPSON S., SHORE R.E. et coll. Handheld cellular telephone use and risk of brain cancer. JAMA. 2000. 284 : 3001-3007.
23. MORGAN R.W., KELSH M.A., ZHAO K., EXUZIDES K.A. Radiofrequency exposure and mortality from cancer of the brain and lymphatic/hematopoetic systems. Epidemiology. 2000. $11: 118$-127.
24. HARDELL L., MLD H.K., PAHLSON A., HALLQUIST A. Ionizing radiation, cellular telephones and the risk for brain tumors. European Journal of Cancer Prevention. 2001. 10 : 523-529.
25. STANG A., ANASTASSIOU G., AHRENS W., BROMEN K., BORNFELD N. et coll. The possible role of radiofrequency radiation in the development of uveal melanoma. Epidemiology. 2001. 12:7-12.
26. «Mobiles phones and their transmitter bases stations. The evidence for health hazards». A local Government and Community Resources Documents. EMFacts Information Service. 1996. 240 pages.
27. SANTINI R., SANTINI P., SEIGNE M., DANZE J.M. Symptômes exprimés par des riverains de stations relais de téléphonie mobile. La Presse Médicale. 2001. 30 : 1594.
28. SANTINI R., SANTINI P., DANZE J.M., LE RUZ P., SEIGNE M. Enquête sur la santé de riverains de stations relais de téléphonie mobile. I : Incidences de la distance et du sexe. Pathol. Biol. 2001. (Sous presse).
29. MAGRAS I.N., XENOS Th.D. RF radiation-induced changes in the prenatal development of mice. Bioelectromagnetics. 1997. $18: 455-461$.
30. DOLK. H., SHADDICK G., WALLS P., GRUNDY Ch. et coll. Cancer incidence near radio and television transmitters in Great Britain. I - Sutton Coldfield transmitter. Am. J. Epidemiol. 1997. 145: 1-9.
31. HOCKING B., GORDON I., GRAIN H., HATFIELD G. Cancer incidence and mortality and proximity to TV towers. MJA. 1996. 165: 601-605.
32. KOLODYNSKI A.A., KOLDYNSKA V.V. Motor and psychological functions of school children living in the area of the Skunda Radio Location Station in Latvia. The Science of the Total Environment. 1996. 180:87-93.
33. MICHELOZZI P., ANCONA C., FUSCO D., FORASTIERE F., PERUCCI C.A. Risk of leukemia and residence near a radio transmitter in Italy: Epidemiology. 1998. 9: S 111.
34. SANTINI R., DANZE J.M., SEIGNE M., LOUPPE B. Guide pratique européen des pollutions électromagnétiques de l'environnement. Editions Marco Pietteur. 2000. 238 pages.
35. Grand Duché de Luxembourg - Ministre de l'environnement du travail et de l'emploi - Texte du 19 décembre 2000.
36. Salzburg Resolution on Mobile Telecommunication Base Stations - International Conference on Cell Tower Siting Linking Sciences and Public Health. Salzburg Austria. June 7-8. 2000.
37. INRS. Champs électriques, champs magnétiques, ondes électromagnétiques. Guide à l'usage du médecin de travail et de prévention. Edition INRS. ED. 785. 1995. 134 pages.

ACKNOWLEDGEMENT

The author gratefully acknowledges Janet NEWTON, President of The EMR Network for her help with the English translation.

If you cite all or part of this text, please give the author's name and the place of this presentation.

Neurobehavioral effects among inhabitants around mobile phone base stations

G. Abdel-Rassoul *, O. Abou El-Fateh, M. Abou Salem, A. Michael, F. Farahat, M. El-Batanouny, E. Salem
Community, Environmental and Occupational Medicine Department, Faculty of Medicine, Menoufiya University, Shebin El-Kom, Egypt
Received 20 October 2005; accepted 18 July 2006
Available online 1 August 2006

Abstract

Background: There is a general concern on the possible hazardous health effects of exposure to radiofrequency electromagnetic radiations (RFR) emitted from mobile phone base station antennas on the human nervous system. Ainz: To identify the possible neurobehavioral deficits among inhabitants living nearby mobile phone base stations. Methods: A cross-sectional study was conducted on (85) inhabitants living nearby the first mobile phone station antenna in Menoufiya governorate, Egypt, 37 are living in a building under the station antenna while 48 opposite the station. A control group (80) participants were matched with the exposed for age, sex, occupation and educational level. All participants completed a structured questionazire containing: personal, educational and medical histories; general and neurological examinations; neurobehavioral test battery (NBTB) [involving tests for visuomotor speed, problem solving, attention and memory); in addition to Eysenck personality questionnaire (EPQ). Results: The prevalence of neuropsychiatric complaints as headache (23.5%), memory changes (28.2%), dizziness (18.8%), tremors (9.4%), depressive symptoms (21.7%), and sieep disturbance (23.5%) were significantly higher among exposed inhabitants than controls: (10%), (5%), (5%), (0%), (8.8%) and (10%), respectively ($P<0.05$). The NBTB indicated that the exposed inhabitants exhibited a significantly lower performance than controls in one of the tests of attention and short-term auditory memory [Paced Auditory Serial Addition Test (PASAT)]. Also, the inhabitants opposite the station exhibited a low'er performance in the problem solving test (block design) than those under the station. All inhabitants exhibited a better performance in the two tests of visuomotor speed (Digit symbol and Trailmaking B) and one test of attention (Trailmaking A) than controls. The last available measures of RFR emitted from the first mobile phone base station antennas in Menoufiya governorate were less than the allowable standard le:el. Conclusions and recommendations: Inhabitants living nearby mobile phone base stations are at risk for developing neuropsychiatric problems and some changes in the performance of neurobehavioral functions either by facilitation or inhibition. So, revision of standard guidelines for public exposure to RER from mobile phone base station antennas and using of NBTB for regular assessment and early detection of biological effects among inhabitants around the stations are recommended. (i) 2006 Elsevier Inc, All rights reserved.

Keywords: Neurobehavioral effects; Mobile phone base stations; Radiofrequency radiations (RFR)

1. Introduction

There is a general concern about the possible hazardous health effects of exposure to radiofrequency radiations (RFR) emitted from mobile phone base station antennas. Disturbance of the nervous system leads to behavioral changes and may serve as an early indicator of disturbances in regulatory functions of many

[^2]0161-813X/5 - see front matter (C) 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.תeuro.2006.07.012
systems (Lai and Singh, 1994). Exposure of the neural tissue to RFR can cause electrophysiological changes in the nervous system (Navakatikian and Tomashevskaya, 1994; Velizaroy et al., 1999). Some studies have suggested that RFR induce tissue heating leads to tissue damage (Gajsek et al., 2002; Preece et al., 1999). Some effects are observed among mobile phone users at low intensity and after repeated exposure (Hyland, 2000). The efflux of calcium ions from brain tissue is an important neurochemical effect of RFR as calcium ion plays an important role in the functions of the nervous system such as the release of neurotransmitters (Dutta et al., 1989). Experimental studies on
rats indicated that both cholinergic and endogenous opioid transmitter systems inside the central nervous system are involved in the RFR-induced spatial working memory deficit (Lai et al., 1990, 1994). Moreover, RFR activate endogenous opioids in the brain, which in turn cause a decrease in cholinergic activity leading to short-term memory deficit. The stress hormone "corticotropin releasing factor" is also involved (Lai et al., 1994).

The emissions of a mobile phone base station are usually described by its effective radiated power which is given in Watts (W) (Nousir, 2002). The intensity of RFR is called the power density and is measured in ($\mathrm{mW} / \mathrm{cm}^{2}$). However, the specific absorption rate (SAR) that is measured in (W/kg) of tissue is a more reliable determinant and index for RFR biological effects than power densities as SARs reflect what is actually being absorbed rather than the energy quotient in space (Lai, 2000).

There are national and international safety guidelines for public exposure to RFR produced by mobile phone base stations. The Egyptian standard follows the ANSI/IEEE (1992), the permissible level of radiation power density is less than $0.4 \mathrm{~mW} / \mathrm{cm}^{2}$ (Egyptian Protocol of Criteria for Construction of Mobile Phone Base Stations, 2000).

Increased concern by the public about the safety and potential health effects at the appearance of a multitude of cellular transmitter antennas on the buildings and fear of unknown make it necessary to provide an answer to the question about safety of mobile phone base stations. So this study aimed to identify the possible neurobehavioral deficits among inhabitants living nearby the first mobile base station in Menoufiya governorate. To the best of our knowledge, no similar studies were carried out in Egypt till now, but other studies all over the world were performed mainly about safety of cellular phone use.

2. Subjects and methods

This cross-sectional study was conducted during the period from March to December 2003, included inhabitants living in and opposite to the building where the first mobile phone base station was constructed in Shebin El-Kom City (Menoufiya governorate) in 1998 (Fig. 1). The base station consists of three antennas and a shelter which contains an electric power station and the cables for the base station antennas (Fig. 2).

Eighty-five exposed individuals completed the study. Thirtyseven were current inhabitants living under the mobile phone base station antennas, while the other forty-eight were employees and agriculture engineers working in agricultural directorate building approximately 10 m opposite to the station. A control group constituted of 80 employees and engineers of a Shebin El-Kom agricultural administration building located approximately 2 km from the designated mobile phone base station was chosen and completed the study. They were matched for age, sex, occupation (employees and agriculture engineers), education level and mobile phone use. Consent forms were signed by all participants as they were volunteers, they were asked to do their best during testing. Approval and support from the ethical committee at Menoufiya Faculty of Medicine were obtained. None of the participants was informed

Fig. 1. The mobile phone base station antennas upon the building for agricultural professions.
about the purpose of the study so as to exclude any malingering effects. They were informed about the purpose of the study at the end. The average exposure time for RFR was 8 h for employees in the building underneath the antenna and 15 h for inhabitants of the building opposite the antenna. None of the controls lived near an antenna. The exclusion criteria were based on personal and medical histories including those having epilepsy, psychiatric disorders or specific cause of headache. The tools used to collect data were:
(A) Questionnaire: included data about personal, occupational and medical histories and neuropsychiatric complaints such as headache, irritability, memory changes, tremors, dizziness, blurred vision, and depressive symptoms (sensation of sadness) (Abdel Gawad, 1972). The questionnaire clearly

Fig. 2. The antenna of a mobile phone base station upon the building.

Table 1
Personal characteristics of exposed and control participants

Personal characteristics	Exposed ($n=85$) mean \pm S.D.		Controls ($n=80$) mean \pm S.D.		Test of significance	P-value
Age (years)	38.23 ± 14.56		39.88 ± 15.29		t-Test $=0.98$	>0.05
	No	56	No	90		
Sex						
Male	48	56.50	47	58.75	$\chi^{2}=0.09$	>0.05
Female	37	43.50	33	41.25		
Education level						
Basic	3	3.50	0	0.00	$\chi^{2}=2.96$	>0.05
Secondary	34	40.00	35	43.75		
University	48	56.50	45	56.25		
Smoking						
Smokers	4	4.70	7	8.75	$x^{2}=1.08$	$=0.05$
Nonsmokers	81	95.30	73	91.25		
Mobile phone use						
Users	10	11.76	8	10.00	$\chi^{2}=0.01$	20.05
Non-users	75	88.24	72	90.00		

Exposed and controls were of the same age, sex, educational levels, smoking habits and mobile phone use ($P>0.05$).
stated the confidentiality of the response with no identification of names or contact information.
(B) Clinical examination: including general and local neurological examination.
(C) Neurobehavioral test battery (NBTB) (Lezak, 1995; Wechsler, 1981): a series of eight neurobehavioral tests translated into Arabic by Meleka (1991) was used. They included tests of: (1) Visuomotor Speed (Digit Symbol and Trailmaking B), (2) problem solving (block design), (3) attention and short-term auditory memory (PASAT, Letter Cancellation and Trailmaking A), (4) memory [(Digit Span forward and backward and Benton Visual Retention Test (BVRT)]. In addition to this NBTB, Eysenck Personality Questionnaire (EPQ) (Eysenck, 1990) was used to measure personality domains. Better performance is evaluated by higher scores obtained on tests of Digit Symbol, Block Design, PASAT, Digit Span and BVRT, while lower latency or time to complete Trailmaking parts A and B tests indicated better performance.
(D) Environmental measures: the most recent measures at the start of the study for the power density ($\mathrm{mW} / \mathrm{cm}^{2}$) of mobile phone base station antennas under the study done by the National Telecommunication Institute at the year 2000 were considered.

2.1. Statistical analysis

Data were collected, tabulated and statistically analyzed using chi-square (χ^{2}) and student t-tests and analysis of covariance (ANCOVA) for comparison betw'een groups at 5% level of significance.

3. Results

Eighty-five exposed participants (56.5% males and 43.5% females) with a mean age (38.2 ± 14.5 years) were matched
with 80 controls (58.7% males and 43.3% females) with a mean age (39.8 ± 15.2 years) $(P>0.05$). They were also matched regarding sex distribution, education level, smoking and mobile phone use ($P>0.05$, Table 1). Although both exposed and control groups did not differ significantly on studying these variables, the analysis of covariance (ANCOVA) was used to adjust for their influence as they are confounders for neurobehavioral performance. ANCOVA confirmed the same deficits as the t-test comparisons.

Table 2
Measurements of power density for mobile phone base station antennas upon the building under the study by National Telecommunication Institute (NTI, 2000)

Site of measurement	Power density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	The maximum permissible level for continuous exposure $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
Antenna 1		
1	0.0020	0.0080
2	0.0024	0.0080
3	0.0063	0.0080
Antenna 2	0.0033	0.0080
1	0.0032	0.0080
2	0.0026	0.0080
3	0.0067	0.0080
4	0.0024	0.0080
5		0.0080
Antenna 3:	0.0055	0.0080
1	0.0039	0.0080
2	0.0001	0.0080
3	0.0001	0.0080
Inside the shelter	0.0001	0.0080
At different sites		
Within the apartment		

NB: The maximum permissible level for intermittent exposure is $0.4 \mathrm{~mW} / \mathrm{cm}^{2}$ that decreased to $0.0080 \mathrm{~mW} / \mathrm{cm}^{2}$ for continuons exposure (Egyptian Protocol of Criteria for Construction of Mobile Phone Stations, 2000).

Table 3
Neurological complaints among exposed and controls

Neurological complaints	Exposed ($N=85$), $N(5)$	Controls ($N=80$), $N(50)$	χ^{2}	P-value	OR [95\% Cl]
Headache	20 (23.5)	8 (10.5)	4.44	<0.05	2.77 [1.06-7.4]
Memory changes	24 (28.2)	4 (5.0)	14.19	-0.001	7.48 [2.29-26.98]
Tremors	8 (9.4)	0 (0.0)	Fisher exact	$\leqslant 0.01$	- 12.
Dizziness	16 (18.8)	4 (5.0)	6.15	<0.01	4.41 [1.29-16.46]
Depressive symptoms	18 (21.7)	7 (8.8)	4.03	$\therefore 0.05$	2.8 [1.02-7.94]
Blurred vision	19 (22.3)	12 (15.0)	1.02	>0.05	1.63 [0.69-3.91]
Sleep disturbance	20 (23.5)	8 (10.0)	4.44	<0.05	2.77 [1.06-7.4]
Iritability	23 (27.1)	16 (20.0)	0.78	>-0.05	1.48 [0.68-3.27]
Lack of concentration	14 (16.5)	8 (10.0)	0.99	>0.05	1.77 [0.65-4.97]

Fischer exact test was used as the calculated expected number in this cell was lower than five.

The last available measures of RFR from the mobile phone base stations antennas from the building in the study were less than the allowable standard level ($0.4 \mathrm{~mW} / \mathrm{cm}^{2}$) (Table 2) in the year 2000 . The numbers $1-5$ indicate the sites at which the measures on a specific antenna were taken. The shelter was an enclosed room containing an electric power station and the cables for the base station antenna. The tower is a building of 12 stories. No measures were available for the buildings across the street or from the control building.

The prevalence of headache (23.5%), memory changes (28.2%), tremors (9.4%), dizziness (18.8%), depressive symptoms (21.7%) and sleep disturbances (23.5%) among exposed subjects were significantly higher than controls (10%, $5 \%, 0 \%, 5 \%, 8.8 \%$ and 10%; respectively) ($P<0.05$, Table 3). The only difference between the exposed participants under the station as opposed to those working opposite it was in the prevalence of sleep disturbance (10.8% and 31.3%, respectively) ($P<0.05$, Table 4).

The exposed participants exhibited a significantly poorer performance than controls in one test of attention and shortterm auditory memory (PASAT), but they exhibited significantly better performance than controls in tests of visuomotor speed (Digit Symbol and Trailmaking B) $(P<0.01)$ and one test of attention (Trailmaking A) $(P<0.001)$. The difference in scores in Trailmaking A was so high and these scores were verified again and no numerical errors were found. There was no significant difference between exposed and controls in the
score of EPQ scale ($P>0.05$, Table 5). The exposed participants opposite to the station exhibited a significantly lower performance in the problem solving (Block Design) than those living under the station ($P<0.05$, Table 6).

4. Discussion

The extensive use of mobile phones has been accompanied by public debate about possible adverse effects on human health. However, little is known about the effects of long-term exposure that is experienced by people living near mobile phone base stations (Bortkiewicz et al., 2004).

The last available measurements of RFR emitted from mobile phone base station antennas under the study in the year 2000 were less than the Egyptian allowable standard level $\left(0.4 \mathrm{~mW} / \mathrm{cm}^{2}\right)$. However, the level of exposure to RFR increases or decreases according to the number of phone calls from different parts of country or other countries. The number of subscribers in mobile phone service increased approximately four times within 2 years from about $1,575,000$ (2.5% of the Egyptian population) in the year 2000 at the time of the previously measured levels to about $7,000,000(9.5 \%$ of the Egyptian population) in the year 2002 (El-Mesairy, 2002) just before the beginning of this study in the year 2003. Consequently, it is expected that the previously mentioned levels of exposure to RFR in the year 2000 were higher at the time of the study.

Table 4
Neurological complaints among inhabitants living under and opposite the station

Neurological complaints	Inhabitants		χ^{2}	P-value	OR [95\% CI]
	Opposite the station $(N=48), N(\Gamma)$	Under the station $(N=37), N(\%)$			
Headache	15 (31.3)	5 (13.5)	2.73	$=0.05$	2.91 [0.85-10.47]
Memory changes	12 (25.0)	12 (32.4)	0.26	$=-0.05$	0.69 [0.24-1.99]
Tremors	4 (8.3)	4 (10.8)	0.00	- 0.05	0.75 [0.14-3,92]
Dizziness	$9(18.8)$	7 (18.9)	0.07	$=-0.05$	0.99 [0.29-3.38)
Depressive symptoms	9 (18.8)	8 (21.6)	0.10	$=0.05$	0.84 [0.25-2.75]
Blurred vision	12 (25.0)	7 (18.9)	0.16	$=0.05$	1.43 [0.45-4.65]
Sleep distarbance	15 (31.3)	4 (10.8)	3.92	<0.05	3.75 [1.01-15.09]
Irritability	16 (33.3)	7 (18.9)	1.53	>0.05	2.14 [0.7-6.74]
Lack of concentration	9 (18.8)	5 (13.5)	0.12	$=0.05$	1.48 [0.4-5.71]

Table 5
Mean \pm S.D. of neurobehavioral performance and personality scores of exposed and controls

Neurobehavioral tests	Exposed ($n=85$)		Controls ($n=80$)		1 -Test	p
	$\bar{\chi}$	\pm S. D .	8	\pm S.D.		
Performance tests						
Visuomotor speed						
Digit symbol	41.43	11.91	31.30	11.98	3.19	<0.01
Trailmaking B	84.79	21.88	108.40	39.49	3.16	<0.01
Problem solving						
Block design	24.32	7.23	24.15	5.25	0.10	$2-0.05$
Attention						
P.LSAT	12.20	4.20	15.47	5.49	4.31	<0.001
Letter cancel	30.28	5.20	31.56	5.92	1.35	>0.05
Trailmaking A (s)	26.10	21.43	88.25	25.46	3.84	<0.001
Memory						
Digit span forward	6.40	1.69	7.05	2.50	1.21	>0.05
Digit span backupards	2.60	0.82	2.37	0.89	1.73	>0.05
Digit span total	9.09	2.82	9.42	3.78	0.38	>0.05
BVRT	4.48	1.62	3.95	0.97	1.36	$=0.05$
Eysenck personality questionnaire (EPQ)						
P (psychoticism)	7.04	1.73	7.40	2.10	1.20	$=0.05$
C (criminality)	12.69	3.60	13.58	4.39	0.86	>0.05
N (neuroticism)	10.84	3.93	12.20	4.14	1.29	$=0.05$
E (extroversion)	10.82	3.62	10.85	3.95	0.38	>0.05
L (lie)	15.45	4,18	10.10	3.45	0.62	>0.05

On studying the prevalence of neurological complaints among exposed subjects and controls, headache, memory changes, tremors, dizziness, depressive symptoms and sleep disturbance were significantly higher among exposed (23.5%, $28.2 \%, 9.4 \%, 18.8 \%, 21.7 \%$ and 23.5%, respectively) than controls ($10 \%, 5 \%, 0 \%, 5 \%, 8.8 \%$ and 10%, respectively) ($P<0.05$). These results agree with Santini et al. (2002) who found that the frequency of headache, loss of memory, irritability, dizziness, depression and sleep disturbance was
significantly higher among people living near cellular phone base stations $(25.4 \%, 27.6 \%, 4.5 \%, 4 \%, 9.2 \%$ and 4.1%, respectively) than controls ($P<0.05$). Also, Frey (1998) and Leif (2003) observed various complaints mostly of sleep disturbance, irritability, depression, headache, vertigo and concentration difficulties among people living near mobile base stations.

On comparing exposed inhabitants living in the building under the station with those opposite the station regarding

Table 6
Mean \pm S.D. of neurobehavioral performance score of inhabitants living under and opposite the station

Performance tests	Inhabitants ($n=85$)				Student's 1 -test	P
	Under the station ($n=37$)		Opposile the station ($n=48$)			
	X	\pm S.D.	\bar{X}	\pm S.D.		
Visuomotor speed						
Digit symbol	42.24	12.67	40.79	11.72	0.41	≥ 0.05
Trailmaking B	89.52	24.95	81.35	19.16	0.11	- 0.05
Problern solving						
Block design	27.57	4.61	21.37	7.97	3.23	- 2.01
Altention						
PASAT	11.69	1.73	12.25	2.10	1.80	$=0.05$
Letter cancel	32.31	5.43	33.15	5.65	0.52	$=0.05$
Trailmaking A (s)	65.24	24.16	56.96	19.24	0,11	$>0,05$
Memor;						
Digit span forward	6.63	0.57	6.30	1.77	0.63	>0.05
Digit span backward	3.21	1.02	2.90	0.75	1.43	>0.05
Digit span total	9.84	2.29	9.20	2.61	1.68	$=0.05$
B V RT	4.57	1.33	4.40	1.88	0.35	$=0.05$

neurological complaints, there was a significant increase in the prevalence of sleep disturbance among the inhabitants opposite to the station (31.3% versus 10.8%) $(P \leq 0.05)$. This could be explained by the fact that the concrete roof can soak up to $5-30 \%$ of the radiation from the antennas, so the levels of radiation in the building under the station may be lower than opposite and pose fewer hazards (El-Mesairy, 2002; Knave, 2001).

On studying the neurobehavioral performance using NBTB and personality domains using (EPQ) scale, the exposed participants exhibited a significantly better performance than controls in tests of tisuomotor speed (Digit Symbol and Trail making B) and one test of attention (Trail making A) than controls, but they exhibited a poorer performance in PASAT test (which measures attention and short-term auditory memory) than controls. Better performance is evaluated by higher scores obtained on tests of Digit Symbol, Block Design, PASAT, Digit Span and BVRT, by contrast: lower latency or time to complete Trailmaking parts A and B tests indicated better performance.

The better performance in some neurobehavioral tests in this study agreed with Koivisto et al. (2000) and Lee et al, (2001) who suggested that the electromagnetic field emitted by cellular telephones may have a facilitatory effect on brain functioning. On the other hand, responses of central nervous system to RFR could be a stress response (Duan et al., 1998; Lai and Singh, 1997). Stress effects are well known to accumulate over time and involve first adaptation and then an eventual breakdown of homeostatic processes. Moreover, Lai et al, $(1990,1994)$ experimental studies on rats indicated that RFR can activate endogenous opioids in the brain, which in turn cause a decrease in cholinergic activity leading to shortterm memory deficit. The stress hormone "corticotropin releasing factor" is also involved. This may explain the lower performance of exposed subjects in PASAT test in this study. On the other hand, on studying the personality domains using (EPQ) scores, there was no difference between exposed inhabitants and controls in the present study regarding these scores. This may be explained by the fact of the presence of relatively low levels and short duration of exposure (about 5 years) to RFR since the establishment of the base station under the study, a matter which needs a further wide scale research to be verified.

5. Conclusion and recommendations

The inhabitants around mobile base station antennas significantly complain or develop headache, memory changes, tremors, dizziness, depressive symptoms and sleep disturbance than controls. Also, there are some effects of RFR emitted from these antennas on neurobehavioral performance. Therefore, the study recommends:
(1) Annual monitoring of RFR emitted from the mobile phone base station antennas should be carried out as their values may become higher due to the expected extensive future use of mobile phones and hence more activity and more arising
emissions leading to increase in incidence and severity of neurobehavioral disorders among inhabitants around these stations. At the same time, this will clarify controversies met with in this study regarding scores of some NB tests for exposed inhabitants.
(2) For inhabitants near mobile phone base station, NBTB can be used as a useful non-invasive tool for assessment and early detection of subtle effects of exposure to RFR.
(3) Further follow up wide scale studies for those inhabitants exposed for longer durations to RFR arising from mobile phone base stations should be done to clarify if there is an actual positive association and/or causation between exposure and either of the development of neurobehavioral complaints or NBTB and personality changes so as to cut off the challenge of presence of controversies in the results done in this field all over the world.

References

Abdel Gawad S (1972). The Arabic copy of middle six questionnaire for astessment of psychological status and diagnosis of psychiatric disorders. Psychiatric department, El-Kasr El-Aini Hospital, personal communication.
American National Standards Institute and the Institute of Electrical and Electronics. Engineers [.ANSI/IEEE] (1992). Standard for safety levels with respect to haman exposure to radiofrequency electromagnetic fields. ANSI/IEEE C 95-1-1991. Nev: York. htp://www.electric-u ords.com/adey/ adeyoverviewl.html.
Bortkiewicz A, Zmyslony M, Szyjkowska A, Gadzicka E. Subjective symptoms reported by people living in the vicinity of cellular phone base stations. Rev Med Pr 2004;55:345-51.
Duan L, Shan X, Xu X. Observation of changes in neurobehavioral functions in workers exposed to high frequency radiation. Chung Hua Xu Faog Hsueh Tsa Chilh 1998;32(2):109-11 (Abstract in English).
Dutta S, Ghosh B, Blackman C. Radiofrequency radiation induced calcium efflux enhancement from human and other nearoblastoma cell in culture. Bioelectromagnetics 1989;10:197-202.
Eysenck H. Biological dimensions of personality. In: Previn L, editor. Handbook of personality. Theory and research. New York; Guilford; 1990. p. 244-76.

Frey A. Commentary: headache from cellular phones: are they real and what are the implications? Environ Health Perspect 1998;106:101-3.
Gajsek P, Palchomov A, Klavenberg B. Electromagnetic field standards in Central and Eastern European countries: corrent state and stipulations for international harmonization. Health Phys 2002;82:473-83.
Hyland G. Physics and biology of mobile telephony. Lancet 2000;356:1833-6.
Knave B. Electromagnetic fields and health outcomes. Ann Acad Med Singapore 2001;30:489-93.
Koivisto M, Revonsuo A, Krause C, Haarala C, Sillanmaki L. Effects of 902 MH3 electromagnetic field emitted by cellular phones on response times in human. Neuro-Report 2000;11:413-5.
Lai $\mathrm{H}(2000)$. Biological effects of radiofrequency radiation from wireless transmission towers. Berkeshire-Litchfield Environmental Council. http:// electric-words.com/adey/adeyover;iev:/html.
Lai H, Singh N. Research on the neurological effects of non-ionizing radiation at the university of Washington, Bioelectromagnetics 1994;13:513-26.
Lai H. Singh N. Neurological effects of radiofrequency electromagnetic radiation related to wireless communication technology. Int J Rad Biol 1997;71:413-21.
Lai H, Carino MIA, Horita . I, Guy AW. Corticotropin-releasing factor antagonist blocks microwave-induced changes in central cholinergic activity in the rat. Brain Res Bull 1990;25:609-12.
Lai H, Horita A, Guy AW: Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics 1994;15:95-104.

Lee T, Ho S, Tsang L, Xang S, Li L, Chan C. Effect on human attention of exposure to the electromagnetic field emitted by mobile phones. Neuro Report 2001;12:729-31.
Leif S. Mobile phones confirmed as a cause of earlier rilzheimer's onset and damage to memory and learning ability in mammals. Sweden: Lund University Hospital; 2003.
Lezak MD. Neuropsychological assessment. 3rd ed. Oxford University Press; 1995 pp. 335-344.
Navakatikian M1, Tomashevskaya L. Phasic behavioral and endocrinal effects of microwaves of non-thermal intensity. In: Carpenter D_{1} editor. Biological effects of electric and magnetic fields, vol. 1. San Diego: Academic Press; 1994. p. p. 236-9.

Preece A, Iwi G, Davies-Smith A, Wesnes K, Buler S, Lim E, Varey A. Effects of 915 MHZ stimulated mobile signal on cognitive function in man. Int J Radial Biol 1999:75:447-56.
Santini R, Santini P, Danze J, Le-Ruz P, Scigne M. Investigations on the health of people living near mobile telephone relay slations. Incidence according to distance and sex. Pathol Biol 2062;50:369-73.
Velizaroy S, Rashmark P, Kwee S. The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochem Bioenergy 1999;48: 177-80.
Wechsler D. Wechsler adult intelligence scale-revised, San Antonio, TX: The Psycological Corporation; 1981.

Arabic references


```
:(2002) El-Mesairy and Abdel-Moniem)O O
```



```
تركيب (ا)
```



```
                                    20-15
```


INCREASED INCIDENCE OF CANCER NEAR A CELLPHONE TRANSMITTER STATION.

RONNI WOLF MD ${ }^{1}$

DANNY WOLF MD ${ }^{2}$

From:
The Dermatology Unit, Kaplan Medical Center, Rechovot, and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, ISRAEL. The Pediatric Outpatient Clinic, Hasharon Region, Kupat Holim, ISRAEL.

Running title: Cancer near a cell-phone transmitter station.

Address for correspondence: Ronni Wolf, MD, Dermatology Unit, Kaplan Medical Center, Rechovot 76100, ISRAEL.

Fax 972-9-9560978. E-mail: wolf_r@netvision.net.il

International Journal of Cancer Prevention
VOLUME 1, NUMBER 2, APRIL 2004

Increased Incidence of Cancer near a Cell-Phone Transmitter Station
by Ronni Wolf and Danny Wolf

Abstract

Significant concern has been raised about possible health effects from exposure to radiofrequency (RF) electromagnetic fields, especially after the rapid introduction of mobile telecommunications systems. Parents are especially concerned with the possibility that children might develop cancer after exposure to the RF emissions from mobile telephone base stations erected in or near schools. The few epidemiologic studies that did report on cancer incidence in relation to RF radiation have generally presented negative or inconsistent results, and thus emphasize the need for more studies that should investigate cohorts with high RF exposure for changes in cancer incidence. The aim of this study is to investigate whether there is an increased cancer incidence in populations, living in a small area, and exposed to RF radiation from a cell-phone transmitter station.

This is an epidemiologic assessment, to determine whether the incidence of cancer cases among individuals exposed to a cell-phone transmitter station is different from that expected in Israel, in Netanya, or as compared to people who lived in a nearby area. Participants are people ($\mathrm{n}=622$) living in the area near a cell-phone transmitter station for 3-7 years who were patients of one health clinic (of DW). The exposure began 1 year before the start of the study when the station first came into service. A second cohort of individuals ($n=1222$) who get their medical services in a clinic located nearby with very closely matched, environment, workplace and occupational characteristics was used for comparison.

In the area of exposure (area A) eight cases of different kinds of cancer were diagnosed in a period of only one year. This rate of cancers was compared both with the rate of 31 cases per 10,000 per year in the general population and the $2 / 1222$ rate recorded in the nearby clinic (area B). Relative cancer rates for females were 10.5 for area A, 0.6 for area B and 1 for the whole town of Netanya. Cancer incidence of women in area A was thus significantly higher ($\mathrm{p}<0.0001$) compared with that of area B and the whole city. A comparison of the relative risk revealed that there were 4.15 times more cases in area A than in the entire population.

The study indicates an association between increased incidence of cancer and living in proximity to a cell-phone transmitter station.

Key Words:

Radiofrequency radiation; Cell-phone transmitter station (cell-phone antenna);
Cancer incidence study; Netanya.

Introduction

Much concern has been expressed about possible health effects from exposure to radiofrequency (RF) electromagnetic fields, particularly following publication of scientific reports suggesting that residence near high voltage power lines may be associated with an increased risk of developing childhood leukemia. While interest tended to focus on microwave ovens and radar equipment in the past, it is now mobile telecommunication that attracts the most attention. The rapid introduction of mobile telecommunications systems, the exponential increase in the use of such phones, and the many base stations needed for serving them have engendered renewed concerns about exposure to RF radiation.

The biological effects of low level electromagnetic fields and a possible potential relation to cancer causation are controversial. There have been several epidemiological studies of the possible adverse health effects associated with environmental exposure to extremely low frequency $(0-300 \mathrm{~Hz})$ non-ionizing radiation, such as that emitted by power cables and electric substations, linking such exposure to leukemia, brain cancer, male breast cancer and skin and eye melanoma (1-11).

Far less attention has been paid to health hazards from environmental exposure to radiation in the RF range (100 kHz to 300 GHz), including the radiation emitted from cell-phone equipment, in the frequencies of 850 MHz , at field strengths much below those required to produce thermal effects. The few epidemiologic studies that did report on cancer incidence in relation to RF radiation (mainly from occupational exposure including microwave and radar and from living in proximity to TV towers) hare generally presented negative or inconsistent results, or were subject to possible confounding from other exposures (12-20).

Laboratory studies in this area have also been confusing and conflicting. While some animal studies suggested that RF fields accelerate the development of cancers, other studies found no carcinogenic effect (21).

Obriously, there is an urgent need for extensive, well-conducted epidemiological and laboratory studies (21-24).

An opportunity for studying the effect of RF radiation presented itself in South Netanya, where a cell-phone transmitter station was located in the middle of a small area. We took advantage of the fact, that most of the population in the investigated area belong to one outpatient clinic (of DW), and undertook an epidemiologic assessment, in which we compared the cancer incidence of this area to those of a nearby clinic, to the national incidence rates of the whole country and to the incidence rates in the whole town of Netanya.

Material and methods

Radio-frequency radiation

The cell-phone transmitter unit is located at the south of the city of Netanya in an area called Irus (area A). It first came into service in $7 / 96$. The people in this area live in half a circle with a 350 meter radius centered on the transmitter.

The antenna is 10 meters high. The antenna bears total maximum transmission power at frequencies of 850 MHz of 1500 watt when working at full power.
Both measured and predicted power density (for the frequencies of 850 MHz) in the whole exposed area were far below $0.53 \mu \mathrm{w} / \mathrm{cm}^{2}$ thus the power density is far below the current guidelines which are based on the thermal effects of $R F$ exposure. Exact measured power density in each house are described in table 1.
The current Israeli standard uses 50 packets/sec with Time-Division-Multiple-Access (TDMA) quadrature modulation. The antenna produces 50 packets/sec, using a 3:1 multiplexed Time-Division-Multiple-Access (TDMA) modulation with a 33% duty cycle.

Statistical analysis:

We conducted a cancer incidence study to investigate the incidence of cancer cases of individuals exposed to a cell-phone transmitter station, in comparison to those of a nearby clinic, to the national incidence rates of the whole country and to the incidence rates in the whole town of Netanya.

The cohort included 622 people living in the Irus area (area A) for at least 3-7 years and were patients of one health clinic (of DW). The exposure began in 7/96 which was 1 year before the start of our study,
Statistical analysis was based on the comparison of observed and expected numbers of cancer cases.

In order to compare incidence rates, 95% confidence intervals were computed.
The observed number of cancer cases is the number of all the cancer cases in the exposed cohort in the period between 7/97-6/98.
In order to estimate relative risk, rate ratios were computed using the rate of 3 different cohorts as the base (the expected values):
The rate in a nearby clinic (which serves a population of 1222 people, all of them living in area B) during the same period of time, i.e. 7/97-6/98. In order to compare area A and area B populations we used:
χ^{2} test to compare origin and sex division
t - test to compare age means
The national incidence rates of the whole country.
The incidence rates in the whole town of Netanya where the 2 clinics (of area A and B) are located. The data of 2 and 3 were given to us by the Israel cancer registry and are updated to the years 91-94.

We also examined the history of the exposed cohort (of the A area) for malignancies in the 5 years before the exposure began and found only 2 cases in comparison to 8 cases detected one year after the transmitter station came into service.

Results

Of the 622 people of area A, eight cases of different kinds of cancer were diagnosed in a period of only one year (from July 1997 to June 1998). Details on these cases are presented in Table 1. Briefly, we found 3 cases of breast carcinoma, and one case of ovary carcinoma, lung carcinoma, Hodgkin's disease, osteoid osteoma, and hypernephroma.

This rate of cancers in the population of area A was compared both with the rate of 31 cases per 10,000 per year in the general population and the $2 / 1222$ rate recorded in a nearby clinic. To each one of the rates, a 95 percent confidence interval was calculated (Table 2): the rates in area A were significantly higher than both those in area B, and the population as a whole.

A comparison of the relative risk revealed that there were 4.15 times more cases in area A than in the entire population.

The population characteristics of areas A and B were very similar (Table 2-5). The χ^{2} test for comparing gender and origin frequencies showed no significant differences in these parameters between the two areas. Age means, as compared by t-test and age distribution stratum also showed no significant difference between the two groups.

Table 2a lists the rates of cancer incidence of areas A and B compared to data of the whole town of Netanya. The comparison clearly indicated that the cancer incidence of women in area A is significantly higher ($\mathrm{p}<0.0001$) compared with that of the whole city.

Discussion

Our study indicates an association between an increased incidence of cancer and living in proximity to a cell-phone transmitter station.

Studies of this type are prone to biases. Possible methodological artefacts to explain our alarming results were considered:

Differences in socioeconomic class and employment status, and demographic heterogeneity due to differences in age, sex and ethnicity were excluded. The two areas that were compared have very closely matched environment, workplace and occupational characteristics.

Confounding variables affecting individuals could not be absolutely adjusted for, however, there was no ionizing radiation that could affect the whole community except the previously mentioned mobile antenna station. There is no traffic density in this area, neither is there any industry or any other air pollution. The population of area A
(on which adequate data could be gathered) did not suffer from uncommon genetic conditions, nor did they receive carcinogenic medications.

Differences in diagnosis and registration of cancer cases. Although we cannot altogether exclude the possibility that higher awareness of the physician responsible for area A led to an artificial increase in cancer cases in this area, this possibility seems to us very unlikely, since both are qualified family physicians.

Several findings are of particular interest:
The measured level of RF radiation (power density) in the area was low; far below the current guidelines based on the thermal effects of RF exposure. We suggest, therefore, that the current guidelines be re-evaluated.

The enormous short latency period; less than 2 years, indicates that if there is a real causal association between RF radiation emitted from the cell-phone base station and the cancer cases (which we strongly believe there is), then the RF radiation should have a very strong promoting effect on cancer at very low radiation!

Although the possibility remains that this clustering of cancer cases in one year was a chance event, the unusual sex pattern of these cases, the 6 different cancer kinds, and the fact that only one patient smoked make this possibility very improbable and remote. It should be noted that 7 out of 8 cancer cases were women, like in the work of Maskarinec (25) who found 6 out of 7 leukemia cases in proximity to radio towers to occur in girls. Such unusual appearances of cancer cases due to one accused factor on two completely different occasions is alarming.

We are aware of at least 2 areas in which a drastic increase in the incidence of cancer cases occurred near a cell-phone antenna, however, the setup was not suitable for a well design study of those cases. In one of them (which also got publication in the daily newspapers) there were 6 out of 7 cancer cases in women working in a store in close proximity to a cell-phone antenna.

In conclusion, the results of this study showed that there was a significantly greater incidence of cancers of all kinds within the vicinity of a cell-phone transmitter station.

It would be certainly too premature to draw any conclusions from our results before they are confirmed and repeated by other studies from other areas, particularly in view of the fact that a great majority of papers on this subject showed that RF fields and mobile telephone frequencies were not genotoxic, did not induce genetic effects in vitro and in viro, and were not found to be teratogenic or to induce cancers (24). The results of this paper should, however, serve as an alarm and emphasize the need for further investigations.

Addendum

At one year following the close of the study, 8 new cases of cancer were diagnosed in area A and two cases in area B. Among the cases diagnosed in area A was one of osteoid osteoma, the second case from the beginning of the study.

References

1. Cartwright R (1989) Low frequency alternating electromagnetic fields and leukaemia: the saga so far. $\mathrm{Br} J$ Cancer 60:649-651.
2. Demers PA et al (1991) Occupational exposure to electromagnetic fields and breast cancer in men. Am J Epidemiol. 134:340-347.
3. Dolk H et al (1997) Cancer incidence near radio and television transmitters in Great Britain. Am J Epidemiol 145:1-9.
4. Elliott P et al (1992) The Small Area Health Statistics Unit: a national facility for investigating health around point sources of environmental pollution in the United Kingdom. J Epidemiol.Community Health 46:345-349.
5. Feychting M and Ahlborn A (1993) Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol 138:467-481.
6. Goldsmith J (1995) Epidemiologic evidence of radio-frequency (microwave)
effects on health in military broadcasting and occupational studies. Int J Occup Med Environ Health 1:47-57.
7. Guenel P et al (1993) Incidence of cancer in persons with occupational exposure to electromagnetic fields in Denmark. Br.J Ind.Med 50:758-764.
8. Hocking B et al (1996) Cancer incidence and mortlity and proximity to TV towers. Med J Aust 165:601-615.
9. Kraut A et al (1991) Epidemiologic investigation of a cancer cluster in professional football players. Environ.Res. 56:131-143.
10. Lester J and Moore D (1982) Cancer mortality and Air Force bases. J Bioelectricity 1:77-82.
11. Maskarinec G et al (1994) Investigation of increased incidence in childhood leukaemia near radio towers in Hawaii: preliminary' observations. J Environ Pathol Toxicol Oncol 13:33-37.
12. MícGregor A (1998) WHO launches mobile-phone hazards study. Lancet 351:276.
13. Milham $\mathrm{S} \mathrm{Jr}_{\mathrm{r}}$ (1988) Increased mortality in amateur radio operators due to lymphatic and hematopoietic malignancies. Am J Epidemiol. 127:50-54.
14. Pollack H (1979) Epidemiologic data on American personnel in the Moscow embassy. Bull N.Y.Acad.Med 55:1182-1186.
15. Polsen P and Merritt J (1985) Cancer mortality and Air Force bases: a reevaluation. J Bioelectricity 4:121-127.
16. Repacholi M (1997) Radiofrequency field exposure and cancer: what do the laboratory studies suggest. Environ Health Perspect 105 (Suppl 6):1565-1568.
17. Repacholi M (1998) Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics 19:1-19.
18. Robinette C, Silvermann C, and Jablon S (1980) Effects upon health of occupational exposure to microwave radiation (radar). Am J Epidemiol 112:39-53. 19. Savitz DA et al (1988) Case-control study of childhood cancer and exposure to $60-\mathrm{Hz}$ magnetic fields. Am J Epidemiol. 128:21-38.
19. Savitz D, Ahlbom A (1994) Epidemiologic evidence of cancer in relation to residential and occupational exposure. In Carpenter D, Ayrapetyan S (eds) Biological effects of electric and magnetic fields. Sydney: Academic Press.
20. Savitz D and Calle E (1987) Leukaemia and occupational exposure to electromagnetic fields: review of epidemiologic surveys. J Occup Med 29:47-51.
21. Theriault, GP. Health effects of electromagnetic radiation on workers: epidemiologic studies. Bierbaum, PJ and Peters, JM. 91-124. 1991. Cincinnati, OH, US Department of Health and Human Services. Proceedings of the Scientific

Workshop on the health Effects of Electric and Magnetic Fields on Workers. Ref Type: Conference Proceeding
23. Tornqvist S et al (1991) Incidence of leukaemia and brain tumours in some "electrical occupations". Br.J Ind.Med 48:597-603.
24. Verschaeve L and Maes A (1998) Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutat Res 410:141-165.
25. Wertheimer N and Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol. 109:273-284.

Acknowledgment

The authors are grateful to Ariva Zeer M.Sc from the Zinman College of Phisical Education and Sport Sciences At the Wingate Institute, Israel, for help with the statistical analysis.

The opinions expressed herein are solely those of the writers and do not necessarily reflect the opinions of the institutions with which the writers are associated.

Table 1: Cancer cases in area A

NAME	AGE	$\begin{array}{\|l\|} \hline \mathrm{SE} \\ \mathrm{X} \end{array}$	$\begin{aligned} & \text { ORI- } \\ & \text { GIN }^{1} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SMO } \\ - \\ \mathrm{KIN} \\ \mathrm{G} \end{array}$	CANCER TYPE	Measured power density in $\mu \mathrm{w} / \mathrm{cm}^{2}$
Hemda	52	f	ash	No	Ovary ca stage 1	$0.3 \mu \mathrm{w} / \mathrm{cm}^{2}$
Edna	42	f	sph	No	Breast ca in situ	$0.4 \mu \mathrm{w} / \mathrm{cm}^{2}$
Tania	54	f	ash	No	Breast ca	$0.5 \mu \mathrm{w} / \mathrm{cm}^{2}$
Neli	67	f	ash	Yes	Breast ca	$0.4 \mu \mathrm{~W} / \mathrm{cm}^{2}$
Galit	24	f	ash	No	Hodgkins	$0.5 \mu \mathrm{w} / \mathrm{cm}^{2}$
Miriam	61	f	sph	No	Lung ca	$0.3 \mu \mathrm{w} / \mathrm{cm}^{2}$
Masal	37	f	sph	No	Osteoid osteoma	$0.4 \mu \mathrm{w} / \mathrm{cm}^{2}$
Max	78	m	ash	No	Hypernephroma	$0.3 \mu \mathrm{w} / \mathrm{cm}^{2}$

1. Origin: ash - Ashkenazien Jews sph - Spharadic Jews

Table 2: Cancer rates in area A, B and the total population.

	No. of cancer cases	populati on size	Rate per year per 10,000	confide interval lower limit	ce (95%) upper limit	relative risk
Area A	8	622	129	40.1	217.2	4.15
Area B	2	1222	16	-6.3	39.0	0.53
total populat	31	10,000	31	20.1	41.9	1.00

Table 2a: Cancer rates in area A, B and the whole town.

	Male		Female	
	rate		Relative rate	rate
relative rate				
Area A	33	1.4	262	10.5
Area B	17	0.7	16	0.6
Whole town	24	1	25	1

Table 3: Comparing area A to area B by gender.

Gender	Area A		Area B	
	N		$\%$	
N	$\%$			
male	290	49	669	49
female	305	51	685	51

Table 4: Comparing area A to area B by origin.

Origin	Area		Area	
	N		$\%$	
N	$\%$			
Sfaradic	340	55	551	45
Ashkenaz	239	38	620	51
Russian	41	7	51	4

Table 5: Comparing age means in both areas.

	Area A		Area B	
	mean	Std	mean	std
age	26.5	17.9	25.5	12.4

Table 5: Age distribution by stratum.

	$\mathbf{0 - 1}$	$\mathbf{1 - 1 0}$	$\mathbf{1 0 - 2 0}$	$\mathbf{2 0 - 3 0}$	$\mathbf{3 0 - 4 0}$	$\mathbf{4 0 - 5 0}$	$\mathbf{5 0 - 6 0}$	$\mathbf{6 0 - 7 0}$	$>\mathbf{7 0}$
IRUS	16	143	157	65	70	88	41	21	21
POLEG	31	285	257	139	180	158	83	55	34

New study links over 7，000 cancer deaths to cell phone tower radiation exposures
Seturday．June 22， 2013 by．Loyd Burroil

> High Blood Pressure？

Three easy exercises drop blood pressure below $120 / 80$ in as little as a week Click harers．
（Natura／News）Could exposure lo rediatton from cell phone to：Avers really reaponsible for over 7，000 cancar deathe？According to research findings from Brazil， the facts speak for themselves．The study established a direct link between cancer deaths in Bejo Horizonte， Brazil＇s third lergest city，with the cell phane network．

What does this direct link stem from？

Over 80 percent of thase who succumbed to certain types of cancer resided approximately a third of a mile away from one of the hundreds of cell phone antennae that populate the cily．

These cancers，primarily found In the prostate， breasts，lungs，kldneys，IVer，are the ones assoclated with exposure to electromagnetic fields（EMFs）．

This is a real concem for cell phone users and even non－cell phone users．Those who ahun moble phone technology still suffer the cansequences of cell phone tower radiation．

Is the Brazilian study an isolated study？

[^3]
Overwhelming evidence

A growing number of organizations and many more studies support the conclusions of the Brazilian study．The international Association for Research on Cancer（IARC），based upon findings from research
conducted by an international think tank，ceme to the conclusion that radio frequency radiation，including the radiation spewing from cell towers，is a possiblo carcinogen．

The Biolinifative 2012 Report written by a group of leading independent International scientists has put out an unequivocal healith warning against exposure to EMFs．This includes exposures from ceil phons towers．

Why are cell phone towers particularly dangerous？
The threst comes from the constant natire of the actlvity of the towers；they emit pubsed radio frequency radiation．Thls radietion has been shown in thousands of studies to eause blological demage to the body and to be a precursor to disease．

What are some of the dangers（besides＂：．．．），which resull from this damage and are sssociated with EMFa and cell phone antennse？
－Genetic mutations
－Memory disruptions
－Hindered leaming
－ADD
－Insomnia
－Brain olsorders
－Hormonal Imbalances
－infertility
－Dementia
－Heart complications
These dangers clearty make it imperative to take action．
Cell towers are here to alay but their implantation needs effective regulation in terms of location and rediation levels．The 1988 Telecommunicalions Act（TCA），does not quallify the public＇a right to protest coll tower locations based on heelth hazards．Cell towers should be located away from residential areas and far away from schools and day care centors．

Sources：

ह！

About the nuthor：
Hoyd Burrell is the author of a new ebook entitled＂How To Beal Electrical Sensitluty＂which offers a solution to the prowing number of people whose health is being compromised by exposure to wireless

Since falling prey to a violent reaction to his cell phone in 2002 he has spent the last 10 years researching the effecta of electromagnelic fields（EMFs）on heath．He now offers a complete solution on how to live a healthy lifo in our increasingly electromagnetic world．

You can download his froe EMF Heath Report and subscribe to his nowsletter by visiting his wobsite

Stay informed FREE subscription to the Health Ranger＇s emall newsiletter

Enter your emall iddress here．
820ば家
Join over four milion monthy readera．Errall privecy 100\％：prolectod．Unsubberfbe at any thro．

9	Fati is Fiction
	Listois Gomatain HO
9	Luving Foods Diat
	EuRat entich
	Bieada Cobb
	aide inue mavert

Now Available at
Natas．

The Influence of Being Physically Near to a Cell Phone Transmission Mast on the Incidence of Cancer

Horst Eger, Klaus Uwe Hagen, Birgitt Lucas, Peter Vogel, Helmut Voit
Published in Umwelt-Medizin-Gesellschaft 17,4 2004, as:
'Einfluss der räumlichen Nähe von Mobilfunksendeanlagen auf die Krebsinzidenz'

Abstract

Summary Following the call by Wolfram König, President of the Bundesamt für Strahlenschutz (Federal Agency for radiation protection), to all doctors of medicine to collaborate actively in the assessment of the risk posed by cellular radiation, the aim of our study was to examine whether people living close to cellular transmitter antennas were exposed to a heightened risk of taking ill with malignant tumors.

The basis of the data used for the survey were PC files of the case histories of patients between the years 1994 and 2004. While adhering to data protection, the personal data of almost 1,000 patients were evaluated for this study, which was completed without any external financial support. It is intended to continue the project in the form of a register.

The result of the study shows that the proportion of newly developing cancer cases was significantly higher among those patients who had lived during the past ten years at a distance of up to 400 metres from the cellular transmitter site, which has been in operation since 1993, compared to those patients living further away, and that the patients fell ill on average 8 years earlier.

In the years 1999-2004, ie after five years' operation of the transmitting installation, the relative risk of getting cancer had trebled for the residents of the area in the proximity of the installation compared to the inhabitants of Naila outside the area.

Key words: cellular radiation, cellular transmitter antennas, malignant tumours

The rapid increase in the use of mobile telephony in the last few years has led to an increasing number of cell phone transmission masts being positioned in or near to residential areas. With this in mind, the president of the German governmental department for protection against electromagnetic radiation (Bundesamtes für Strahlenschutz) Wolfram König, has challenged all doctors to actively help in the work to estimate the risks from such cell phone masts. The goal of this investigation was therefore to prove whether on not people living near to cell phone masts have a higher risk of developing cancerous tumours.

The basic data was taken from the medical records held by the local medical authority (Krankenkasse) for the years 1994 to 2004. This material is stored on computer. In this voluntary study the records of roughly 1,000 patients from Naila (Oberfranken) were used, respecting the associated data protection laws. The results from this study show a significantly increased likelihood of developing cancer for the patients that have lived within 400 metres of the cell phone transmission mast (active since 1993) over the last ten years, in comparison to those patients that live further away, In addition, the patients that live within 400 metres tend to develop the cancers at a younger age. For the years 1999 to 2004 (ie after
five or more years of living with the cell phone transmission mast), the risk of developing cancer for those living within 400 metres of the mast in comparison to those living outside this area, was three times as high.

Introduction

A series of studies available before this investigation provided strong evidence of health risks and increased cancer risk associated with physical proximity to radio transmission masts. Haider et al. reported in 1993 in the Moosbrunn study frequent psychovegetive symptoms below the current safety limit for electromagnetic waves (1). In 1995, Abelin et al. in the Swiss- Schwarzenburg study found dose dependent sleep problems ($5: 1$) and depression (4:1) at a shortwave transmitter station that has been in operation since 1939 (2).

In many studies an increased risk of developing leukaemia has been found; in children near transmitter antennas for Radio and Television in Hawaii (3); increased cancer cases and general mortality in the area of Radio and Television transmitter antennas in Australia (4); and in England, 9 times more leukaemia cases were diagnosed in people who live in a nearby
area to the Sutton Coldfield transmitter antennas (5). In a second study, concentrating on 20 transmitter antennas in England, a significant increased leukaemia risk was found (6). The Cherry study (7) indicates an association between an increase in cancer and living in proximity to a transmitter station. According to a study of the transmitter station of Radio Vatican, there were 2.2 times more leukaemia cases in children within a radius of 6 km , and adult mortality from leukaemia also increased (8).

In 1997 Goldsmith published the Lilienfeld-study that indicated 4 times more cancer cases in the staff of the American Embassy in Moscow following microwave radiation during the cold war. The dose was low and below the German limit (9).

The three studies of symptoms indicated a significant correlation between illness and physical proximity to radio transmission masts. A study by Santini et al. in France resulted in an association between irritability, depression, dizziness (within 100m) and tiredness within 300 m of a cell phone transmitter station (10).

In Austria there was an association between field strength and cardiovascular symptoms (11) and in Spain a study indicates an association between radiation, headache, nausea, loss of appetite, unwellness, sleep disturbance, depression, lack of concentration and dizziness (12).

The human body physically absorbs microwaves. This leads to rotation of dipole molecules and to inversion transitions (13), causing a warming effect. The fact that the human body transmits microwave radiation at a very low intensity means that since every transmitter represents a receiver and transmitter at the same time, we know the human body also acts as a receiver.

In Germany, the maximum safe limit for high frequency microwave radiation is based on purely thermal effects. These limits are one thousand billion times higher than the natural radiation in these frequencies that reaches us from the sun.

The following study examines whether there is also an increased cancer risk close to cellular transmitter antennas in the frequency range 900 to 1800 MHz . Prior to this study there were no published results for longterm exposure (10 years) for this frequency range and its associated effects to be revealed. So far, no followup monitoring of the state of health of such a residential population has been systematically undertaken.

Materials and Methods

Study area

In June 1993, cellular transmitter antennas were permitted by the Federal Postal Administration in the Southern German city of Naila and became operational in September 1993.

The GSM transmitter antenna has a power of 15 dbW per channel in the 935 MHz frequency range. The total

Fig. 1: Schematic plan of the antenna sites
transmission time for the study period is ca. 90,000 hours. In December 1997 there followed an additional installation from another company. The details are found in an unpublished report, appendix page 1-3 (14).

To compare results an 'inner' and 'outer' area were defined. The inner area covered the land that was within a distance of 400 metres from the cellular transmitter site. The outer area covered the land beyond 400 metres. The average distance of roads surveyed in the inner area (nearer than 400 m) was 266 m and in the outer area (further than 400 m) $1,026 \mathrm{~m}$. Fig. 1 shows the position of the cellular transmitter sites I and 2, surrounded by circle of radius 400 metres. The geographical situation shows the transmitter sites $(560 \mathrm{~m})$ are the highest point of the landscape, which falls away to 525 m at a distance of 450 m . From the height and tilt angle of the transmitter it is possible to calculate the distance where the transmitter's beam of greatest intensity strikes the ground (see Fig. 2).

The highest radiation values are in areas of the main

Fig. 2: From the mast height h and the downtilt angle a, the distance D at which the main beam reaches ground is given by $D=\tan (90-a) \times h$
beam where it hits the ground and from the expected associated local reflection; from this point the intensity of radiation falls off with the square of the distance from the transmitter.

In Naila the main beam hits the ground at 350 m with a bearn angle of 6 degrees (15). In the inner area, additional emissions are caused by the secondary lobes of the transmitter; this means in comparison that from purely mathematical calculations the outer area has significantly reduced radiation intensity.

The calculations from computer simulations and the measurements from the Bavaria agency for the environmental protection, both found that the intensity of radiation was a factor of 100 higher in the inner area as compared to the outer area. The measurements of all transmitter stations show that the intensity of radiation from the cell phone transmitter station in Naila in the inner area was higher than the other measurement shown in the previous studies of electromagnetic fields from radio, television or radar (14).

The study StSch 4314 from the ECOLOG Institute indicates an association between a vertical and horizontal distance from the transmitter station and expected radiation intensity on the local people (16). The reason for setting a distance of 400 m for the differentiation point is partly due to physical considerations, and partly due to the study of Santini et al. who chose 300 m (10).

Data Gathering

Similar residential streets in the inner area and outer areas were selected at random. The large old people's home in the inner area was excluded from the study because of the age of the inhabitants. Data gathering covered nearly 90% of the local residents, because all four GPs in Naila took part in this study over 10 years. Every team researched the names of the patients from the selected streets that had been ill with tumours since 1994. The condition was that all patients had been living during the entire observation time of 10 years at the same address.

The data from patients was handled according to data protection in an anonymous way. The data was evaluated for gender, age, tumour type and start of illness. All cases in the study were based on concrete results from tissue analysis. The selection of patents for the study was always done in exactly the same way. Self-selection was not allowed. Also the subjective opinion of patients that the radio mast detrimentally affected their health has not affected this study. Since patients with cancer do not keep this secret from GPs, it was possible to gain a complete data set.

Population study

In the areas where data was collected 1,045 residents were registered in $31,12,2003$. The registration statistics for Naila at the beginning of the study (1.1.1994) show the number of old people in the inner and outer areas, as shown in Table 1. The average age at the beginning

	female	male	total
Inner area	41.48	38.70	40.21
Outer area	41.93	38.12	40.20
Nalla total	43.55	39.13	41.45

Table 1: Overview of average ages at the beginning of the study in 1994

1994:	1aner 22.4%	Ouisy 2.8\%	Naila total 24 8.an
2004	inner 26.33°	outer 367.2	

Table 2: Proportion of patients aged over 60
of the study (1.1.1994) in both the inner and outer areas was 40.2 years. In the study period between 1994-2004, 34 new cases of cancer where documented out of 967 patients (Table 3). The study covered nearly 90% of local residents.

The average age of the residents in Naila is one year more than that of the study due to the effects of the old people's home. From the 9,472 residents who are registered in Naila, 4,979 (52.6\%) are women and 4,493 (47.4\%) are men. According to the register office, in 1.1.1994 in the outer area, the percentage was 45.4% male and 54.5\% female, and in the inner area 45.3\% male and 54.6% female. The number of people who are over 60 years old is shown in Table 2.

The social differences in Naila are small. Big social differences like in the USA do not exist here. There is also no ethnic diversity. In 1994 in Naila the percentage of foreigners was 4\%. Naila has no heavy industry, and in the inner area there are neither high voltage cable nor electric trains.

Results

Results are first shown for the entire 10 year period from 1994 until 2004. Secondly, the last five-year period 1999 to 2004 is considered separately.

Period 1994 to 2004

As a null hypothesis it was checked to see if the physical distance from the mobile transmission mast had no effect on the number cancer cases in the selected population, ie that for both the group nearer than 400 metres and the group further than 400 metres the chance of developing cancer was the same. The relative frequencies of cancer in the form of a matrix are shown in Table 3. The statistical test method used on this data was the chi-squared test with Yates's correction. Using this method we obtained the value of 6.27 , which is over the critical value of 3.84 for a

Penod 1994-2004 Inner area Outer area total new cases of cancers 18 16 34 with no new cancer total 302 631 933	320	647	967

Table 3 : numbers of patients with and without cancers, 1994-2004
statistical significance of 0.05).
This means the null hypothesis that both groups within the 400 -metre radius of the mast and beyond the 400 metre radius, have the same chance of developing cancer, can be rejected with a 95% level of confidence. With a statistical significance of 0.05 , an even more significant difference was observed in the rate of new cancer cases between the two groups.

Calculating over the entire study period of 1994 until 2004, based on the incidence matrix (Table 3) we arrive at a relative risk factor of 2.27 (quotient of proportion for each group, eg 18/320 in the strongly exposed inmer area, against $16 / 647$ in the lower exposed comparison group). If expressed as an odds ratio, the relationship of the chance of getting cancer between strongly exposed and the less exposed is 2.35 .

The following results show clearly that inhabitants who live close to transmitter antennas compared to inhabitants who live outside the 400 m zone, double their risk of developing cancer. In addition, the average age of developing cancer was 64.1 years in the inner area whereas in the outer area the average age was 72.6 years, a difference of 8.5 years. That means during the 10 year study that in the inner area (within 400 metres of the radio mast) tumours appear at a younger age.

In Germany the average age of developing cancer is approximately 66.5 years, among men it is approximately 66 and among women, 67 (18).

Over the years of the study the time trend for new cancer cases shows a high annual constant value (Table 4). It should be noted that the number of people in the inner area is only half that of the outer area, and therefore the absolute numbers of cases is smaller.

Table 7 shows the types of tumour that have developed in the cases of the inner area.

Period 1994 to 1999

No of cases of tumours per yoar of siudy	inner area of the 320 people		nuter arez; of the 647 people	
	totel cases	$\begin{aligned} & \text { per } \\ & 1,000 \end{aligned}$	total cases	$\begin{aligned} & \text { Fer } \\ & 1,000 \end{aligned}$
1994	-	-	1	1.5
1995	-	-	-	-
1996	II	6.3	1	1.5
1997	1	3.1	III	4.6
1998	II	6.3	III	4.6
1999	11	6.3	1	1.5
2000	IIIII	15.6	1	1.5
2001	11	6.3	II	3.1
2002	11	6.3	11	3.1
2003-3/2004	11	6.3	11	3.1

Table 4: 5ummary of the total tumours occurring per year (no, and per thousand)

Penod 1974-1999 new cases of cancers wlth no new cancer total	315	5	8

Table 5 ; numbers of patients with and without cancers, 1994-1999
For the first five years of the radio transmission mast operation (1994-1998) there was no significant increased risk of getting cancer within the inner area as compared to the outer area (Table 5).

Period 1999 to 2004

Under the biologically plausible assumption that cancer caused by detrimental external factors will require a time of several years before it will be diagnosed, we now concentrate on the last five years of the study between 1999 and 2004. At the start of this period the transmitter had been in operation for 5 years. The results for this period are shown in Table 6. The chisquared test result for this data (with Yates's correction) is 6.77 and is over the critical value of 6.67 (statistical significance 0.01). This means, with 99% level of confidence, that there is a statistically proven difference between development of cancer between the inner group and outer group. The relative risk of 3.29 revealed that there was 3 times more risk of developing cancer in the inner area than the outer area during this time period.

Period 1799-2004	Inner area	Oriter ared	total
new cases of cancers with no new cancer total	13	8	31

Table 6 : numbers of patients with and without cancers, 1999-2004
The odds-ratio 3.38 (VI 95\% 1.39-8.25, 99\% 1.05-10.91) allows us with 99% confidence to say that the difference observed here is not due to some random statistical effect.

Discussion

Exactly the same system was used to gather data in the inner area and outer areas. The medical chip card, which has been in use for 10 years, enables the data to be processed easily. The four participating GPs examined the illness of 90% of Naila's inhabitants over the last 10 years. The basic data for this study were based on direct examination results of patients extracted from the medical chip cards, which record also the diagnosis and treatment. The study population is (in regards to age, sex and cancer risk) comparable, and therefore statistically neutral. The study deals only with people who have been living permanently at the same address for the entire study period and therefore

Type of tyumar (organ)	no of tumours. found	total exposted	$\begin{gathered} \text { incidence } \\ \text { pHr } \\ 100,000 \end{gathered}$	ratio inner. outer
breast	8	5.6	112	5:3
ovary	1	1.1	23	0:1
prostate	5	4.6	101	2:3
pancreas	$\begin{aligned} & \mathrm{m} 3 \\ & \mathrm{f} 2 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 2: 1 \\ & 1: 1 \end{aligned}$
bowel	$\begin{aligned} & \min 4 \\ & \mathrm{fO} \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 81 \\ & 81 \end{aligned}$	$\begin{aligned} & 2: 2 \\ & 0: 0 \end{aligned}$
5 kin melanoma	$\begin{aligned} & \text { m1 } \\ & \text { f0 } \end{aligned}$	$\begin{aligned} & \text { U.6 } \\ & 0.7 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 1: 0 \\ & 0: 0 \end{aligned}$
lung	$\begin{gathered} \mathrm{m} 3 \\ \mathrm{fo} \end{gathered}$	$\begin{aligned} & 3.6 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 79 \\ & 24 \end{aligned}$	$\begin{aligned} & 2: 1 \\ & 0: 0 \end{aligned}$
kidney	$\begin{gathered} \mathrm{m} 2 \\ \mathrm{f} 1 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 22 \\ & 15 \end{aligned}$	$\begin{aligned} & 1: 1 \\ & 1: 0 \end{aligned}$
stomach	$\begin{aligned} & \mathrm{m} 1 \\ & \mathrm{f} 1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 27 \\ & 23 \end{aligned}$	$\begin{aligned} & 0: 1 \\ & 0: 1 \\ & \hline \end{aligned}$
bladder	$\begin{gathered} \mathrm{m} 1 \\ \mathrm{fo} \end{gathered}$	$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 44 \\ & 16 \end{aligned}$	$\begin{aligned} & 0: 1 \\ & 0: 0 \end{aligned}$
blood	$\begin{gathered} \mathrm{m} 0 \\ \mathrm{f} 1 \end{gathered}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 0: 0 \\ & 1: 0 \end{aligned}$

Table 7 : Summary of tumours occurning in Nafla, compared with incidence expected from the Saarland cancer register
have the same duration of exposure regardless of whether they are in the inner area or outer area.

The result of the study shows that the proportion of newly developing cancer cases was significantly higher ($p<0.05$) among those patients who had lived during the past ten years within a distance of 400 metres from the cellular transmitter site, which has been in operation since 1993, in comparison to people who live further away. Compared to those patients living further away, the patients developed cancer on average 8.5 years earlier. This means the doubled risk of cancer in the inner area cannot be explained by an average age difference between the two groups. That the transmitter has the effect that speeds up the clinical manifestations of the illness and general development of the cancer cannot be ruled out.

In the years 1999-2004, ie after five years and more of transmitter operation, the relative risk of getting cancer had trebled for the residents of the area in the proximity of the mast compared to the inhabitants of Naila in the outer area ($p>0.01$). The division into inner area and outer area groups was clearly defined at the beginning of the study by the distance to the cell phone transmission mast. According to physical considerations people living close to cellular transmitter antennas were exposed to heightened transmitted radiation intensity.

Both calculated and empirical measurements revealed that the intensity of radiation is 100 times higher in the inner area compared to the outer area. According to the research 5t5ch 4314 the horizontal and vertical position in regards to the transmitter antenna is the most important criterion in defining the radiation intensity area on inhabitants (16).

The layered epidemiological assessment method used in this study is also used in assessment of possible chemical environmental effects. In this case the layering is performed in regards to the distance from the cell phone transmitter station. Using this method it has been shown that there is a significant difference in probability of developing new cancers depending on the exposure intensity.

The number of patlents examined was high enough according to statistical rules that the effects of other factors (such as use of DECT phones) should be normalised across the inner area and outer area groups. From experience the disruption caused by a statistical confounding factor is in the range between 20% and 30\%. Such a factor could therefore in no way explain the 300% increase in new cancer cases. If structural factors such as smoking or excessive alcohol consumption are unevenly distributed between the different groups this should be visible from the specific type of cancers to have developed (ie lung, pharyngeal or oesophageal). In the study inner area there were two lung cancers (one smoker, one non-smoker), and one in the outer area (a smoker), but no oesophageal cancers. This rate of lung cancer is twice what is statistically to be expected and cannot be explained by a confounding factor alone. None of the patients who developed cancer was from a family with such a genetic propensity.

Through the many years experience of the GPs involved in this study, the social structures in Naila are well known. Through this experience we can say there was no significant social difference in the examined groups that might explain the increased risk of cancer.

The type and number of the diagnosed cancers are shown in Table 7. In the inner area the number of cancers associated with blood formation and tumourcontrolling endocrine systems (pancreas), were more frequent than in the outer area (77\% inner area and 69\% outer area).

From Table 7, the relative risk of getting breast cancer is significantly increased to 3.4. The average age of patients that developed breast cancer in the inner area was 50.8 years. In comparison, in the outer area the average age was 69.9 years, approximately 20 years less. In Germany the average age for developing breast cancer is about 63 years. The incidence of breast cancer has increased from 80 per 100,000 in the year 1970 to 112 per 100,000 in the year 2000. A possible question for future research is whether breast cancer can be used as a 'marker cancer' for areas where there is high contarnination from electromagnetic radiation. The report of Tynes et al. described an increased risk of breast cancer in Norwegian female radio and telegraph operators (20).

To further validate the results the data gathered were compared with the Saarland cancer register (21). In this register all newly developed cancers cases since 1970 are recorded for each Bundesland. These data are accessible via the Internet. Patents that suffer two separate tumours were registered twice, which increases the overall incidence up to 10\%, In this

Fig. 3 : Number of new rancer cases 1999 to 2004, adjusted for age and gender, calculated for the 5,000 patient years
register there is no location-specific information, for instance proximity to cell phone transmission masts. The data in the cancer register therefore reflect no real control group but rather the effect of the average radiation on the total population.

From the Saarland cancer register for the year 2000 the incidence of new cancer cases was 498 per 100,000 for men and 462 per 100,000 for women. When adjusted for age and sex one would expect a rate of between 480 and 500 per 100,000 in Naila. For the years 1999 to 2004 there were 21 new cases of cancer among 967 patients. The expected number was 24 cases per 1,000 patients.

The results of the study are shown graphically in Fig. 3. The bars of the chart represent the number of new cancer cases per 1,000 patients in the separate areas, over the five years (bars 2 to 4). The first bar represents the expected number from the Saarland cancer register.

In spite of a possible underestimation, the number of newly developed cancer cases in the inner area is more than the expected number taken from the cancer register, which represents the total population being irradiated. The group who had lived during the past five years within a distance of 400 m from the cellular transmitter have a two times higher risk of developing cancer than that of the average population. The relative risk of getting cancer in the inner area compared with the Saarland cancer register is 1.7 (see to Table 7).

Conclusion

The result of this retrospective study in Naila shows that the risk of newly developing cancer was three times higher among those patients who had lived during past ten years (1994-2004), within a distance of 400 m from the cellular transmitter, in comparison to those who had lived further away.

Cross-sectional studies can be used to provide the decisive empirical information to identify real problems. In the 1960s just three observations of birth deformities were enough to uncover what is today an academically indisputable Thalidomide problem.

This study, which was completed without any external financial support is a pilot project. Measurements of individual exposure as well as the focused search for further side effects would provide a useful extension to this work, however such research would need the appropriate financial support.

The concept of this study is simple and can be used everywhere, where there it a long-term electromagnetic radiation from a transmitting station.

The results presented are a first concrete epidemiological sign of a temporal and spatial connection between exposure to GSM base station radiation and cancer disease.

These results are, according to the literature relating to high frequency electromagnetic fields, not only plausible and possible, but also likely.

From both an ethical and legal standpoint it is necessary to immediately start to monitor the health of the residents living in areas of high radio frequency emissions from mobile telephone base stations with epidemiological studies. This is necessary because this study has shown that it is no longer safely possible to assume that there is no causal link between radio frequency transmissions and increased cancer rates.

Acknowledgements

Our thanks go to all those involved in developing this study, in particular, Herrn Professor Frentzel-Beyme for his advice on all the epidemiological questions.
(Received 14.09.2004; Accepted 08.10.2004)

Footnotes

(1) HAIDER, M., KUNDI, M., KNASMÖLLER. S., HAIDER,T., GROLL KNAPP, E. \& G. OBERMEIER (1993): Medizinisch-hygienische Untersuchungen und Beurteilungen der Kurzwellensendeanlage Moosbrunn, Institut für Umwelthygiene, Universität Wien.
(2) ABELIN, T., ALTPETER, E.S., PFLUGER, D.H., KREBS, T., KÄNEL, J.V., STÄRK, K. \& C. GRIOT (1995): Gesundheitliche Auswirkungen des Kurzwellensenders Schwarzenburg, BEW Schriftenreihe Studie Nr. 56 (BEW: Bundesamt für Energiewirtschaft).
(3) MASKARINEC, G., COOPER, J. \& L. SWYGERT (1994): Investigation of increased incidence in childhood leukemia near radio towers in Hawaii: Preliminary observations, J. Environ. Pathol.Toxicol. and Oncol. 13: 33-37.
(4) HOCKING, B., GORDON, IR., GRAIN HL. et al. (1996): Cancer Incidence and Mortality and Proximity to TV-Towers. Med. J. Australia 165, 11-12: 601-605.
(5) DOLK, H., SHADDICK, G.,WALLS, P., GRUNDY, C., THAKRAR, B., KLEINSCHMIDT, I. \& P. ELLIOT (1997a):Cancer Incidence Near Radio and Television Transmitters in Great Britain, Part 1. Sutton Coldfield Transmitter, Am. J. Epidemiot. 145: 1-9.
(6) DOLK, H., ELLIOT, G., SHADDICK, G., WALLS, P. \& B, THAKRAR (1997b): Cancer Incidence Near Radio and Television Transmitters in Great Britain, Part 2. All High Tower Transmitters, Am. J. Epiderniol, 145; 10-17.
(7) CHERRY, N. (1999): Critism of the proposal to adopt the ICNIRP guidelines for cellsites in New Zealand, ICNIRP Guideline Critique, Lincoln University, Environmental Management and Design Division, Canterbury, NZ,
(8) MICHELOZZI, P., CAPON, A., KIRCHMAYER, U., FORASTIERE, F., BIGGERI, A., BARCA, A. \& C.A.PERUCCI (2001);Department of Epidemiology.Local Health Authority RME Rom, Italy.
(9) GOLDSMITH, JR. (1997): European EpiMarker 2(4): 4-7; Lilienfeld 1978 Final report US Dept. of State, NTIS PB288163, 1978.
(10) SANTINI, R., SANTINI, P., DANZE, J. M., LE RUZ, P. Et SEIGNE,M. (2002): Symptoms experienced by people living in vicinity of cell phone base stations: I. Incidences of distance and sex, Pathol. Biol. 50; 369-373.
(11) KUNDI, M. (2002): Erste Ergebnisse der Studie über Auswirkungen von Mobitfunk-Basisstationen auf Gesundheit und Wohlbefinden. Bericht des Instituts für Umwelthygiene der Universität Wien.
(12) NAVARRO EA., SEGURA J., PORTOLES M., GOMEZPERRETTA de MATEO C. (2003): Das Mikrowellensyndrom: Elne vorläufige Studie in Spanien. Electromagnetic Biology an Medicine (früher: Electro- and Magnetobiology) 22(2): 161169, www.grn.es/electropolucio/TheMicrowaveSyndrome.doc.
(13) BROCKHAUS (1973); abc Physik, VEB F.A. Brockhaus Verlag, Leipzig: 991 ff .
(14) EGER, H., HAGEN, K.U., LUCAS, B., VOGEL, P. \& H. VOIT (2004): Einfluss der räumlichen Nähe von Mobilfunksendeanlagen auf die Krebsinzidenz,Tabellarischer Teil, unveröffentlicht, Naila
(15) Regulierungsbehörde für Post und Telekom (o.J): Standortbescheinigungen,
(16) ECOLOG INSTITUT (2003); Bestimmung der Exposition von Personengruppen, die im Rahmen des Projektes "Querschnittsstudie zur Erfassung und Bewertung möglicher gesundheitlicher Beeinträchtigungen durch die Felder von Mobilfunkbasisstationen" untersucht werden, Berichtszeitraum: 1.2.2003 bis 31.5.2003, Förderkennzeichen: StSch 4314, ECOLOG-Institut für sozial-ökologische Forschung und Bildung gGmbH, Hannover.
(17) KLEINBAUM, D.G., KLEIN, M. (2002): Logistic Regression . A. Self - learning text, Springer Verlag
(18) AG BEVÖLKERUNGSBEZOGENER KREBSREGISTER IN DEUTSCHLAND (Hrsg.) (2004):Krebs in Deutschland, 4. überarb., akt.Ausgabe, Arbeitsgemeinschaft bevölkerungsbezogener Krebsregister in Deutschland in Zusammenarbeit mit dem Robert Koch-Institut, Saarbrücken.
(19) LEGATOR, M.5. 氏 B. STRAWN (1998): Umwelt-Risiko: Chemie, Haug-Verlag.
(20) TYNES, I., HANNEVIK, M., ANDERSEN, A., VISTNES, AI. A HALDORSEN T. (1996): Incidence of breast cancer in Norwegian fernale radio and telegraph operators. Cancer Causes Control 7: 197-204.
(21) www.krebsregister. saarland.de

Kontakt:

Dr. med. Klaus Uwe Hagen
Birgitt Lucas
Peter Vogel
Dr. med. Helmut Voit
Korrespondenz:
Dr. med.Horst Eger
Marktplatz 16
95119 Naila
Tel.: 09282-1304
horst.eger@arcormail.de

Re: 10 factory lane application
gerard neil
to:
Planning
2014/08/27 06:17 PM
Hide Details
From: gerard neil
To: Planning planning@stjohns.ca
History: This message has been forwarded,
Thank you for your response - we are not so interested in the aesthetic result, as the building is quite ugly already, and what can one do about that?
We are seriously interested in the 'emissions' as there are many cases of physical health issues as a result of living close to these devices.
Thank you, I will call to arrange a viewing, Gerard Neil

On Wed, Aug 27,2014 at 4:12 PM, Planning plaming@stiohns.ca wrote:
Mr. Neil
I apologize for the delayed response on your request. Unfortunately, due to privacy laws, we are unable to provide a copy of this Application, however you are welcome to come to our office and view the Application file. We are located on the 3rd Floor of City Hall and are open Monday-Friday 9:00 a.m. - 4:30 p.m. Please call me at 576-8220 to arrange a time.

Attached, I have included an artist rendition of what the Antenna will look like for your information.

Donna

Donna L. Mullett

WPIII
Planning, Development \& Engineering
City of St. John's
p: 576-8220
f: 576-8625
From gerard neil
To: planning@stjohns.ca
Date: 2014/08/21 10:46 AM
Subject: Re: 10 factory lane application

Standing by to hear more bout this
thanks!
gerard

On Sun, Aug 17, 2014 at 11:04 AM, gerard neil wrote:
This application (Factory lane/Bell) has to do with a building directly across the street from me and I wish to view it.
your website provides no information regarding what sort of antennae, and what the emissions are.
Please forward ASAP so I can make a statement on this application
Gerard Neil
St. John's

REPORT
 Finance and Administration Committee

Tuesday, August 12, 2014

IN ATTENDANCE:

Councillor Danny Breen, Chairperson
Councillor Bruce Tilley
Councillor Bernard Davis
Councillor Jonathan Galgay
Councillor Dave Lane
Councillor Wally Collins
Mr. Robert Bishop, Deputy City Manager, Financial Management
Mr. Paul Mackey, Deputy City Manager, Public Works
Mr. Dave Blackmore, Deputy City Manager, Planning, Development \& Engineering
Ms. Jill Brewer, Deputy City Manager, Community Services
Mr. Sean Janes, City Internal Auditor
Ms. Maureen Harvey, Senior Legislative Assistant

a. Memorandum dated July 25, 2014 from the Deputy City Manager of Financial Management re: Interim Financial Statements to June 30, 2014

The Deputy City Manager presented the Committee with the interim financial statements to June 30, 2014 along with a projection to year end.

He reported that there is a material overage (positive variation) on the revenue side in Grants in Lieu of Taxes. This is because of significantly higher Federal property values generally and more specifically, the completion of the new DND facility in Pleasantville. "Water sales and tax" are also well over budget, primarily because of higher water consumption by other municipalities. The large apparent drop in Non-Profit Housing subsidy is just a matter of the timing of the receipt of funds.

On the expenditure side, there are some large variations in the various expenditure groupings but no individually significant variances except for the $\$ 3$ million over-expenditure in snowclearing which was to be expected. Most other apparent variances are attributable to timing (invoices not processed and posted to the end of June) or in some cases such as Protective Inspections, budget and actual do not match up because of staff restructuring between budget units subsequent to the finalization of the budget for 2014.

Projection to Year End

The projection to year end is built on the June 30th statements and reflects adjustments for processing as well as variances which we expect to follow on through the year. Overall, we anticipate a surplus on operations in excess of $\$ 3.5$ million, largely attributable to the boost in Grants in Lieu of Taxes revenue as noted above.

A copy of the financial statements is attached to this report.

Councillor Danny Breen
Chairperson

MEMORANDUM

Date: \quad August 7, 2014
To: \quad Chairman and Members
Finance and Administration Standing Committee
From: Robert G. Bishop, C.A.
Deputy City Manager,
Financial Management
Re:
Interim Financial Statements to June 30, 2014

Attached for your information are interim financial statements for the six months ended June 30,2014 along with a projection to year end.

Six Months Ended June 30, 2014

There is a material average (positive variation) on the revenue side in Grants in Lieu of Taxes. This is because of significantly higher Federal property values generally and more specifically, the completion of the new DND facility in Pleasantville. "Water sales and tax" are also well over budget, primarily because of higher water consumption by other municipalities. The large apparent drop in Non-Profit Housing subsidy is just a matter of the timing of the receipt of funds.

On the expenditure side, there are some large variations in the various expenditure groupings but no individually significant variances except for the $\$ 3$ million over-expenditure in snowclearing which was to be expected. Most other apparent variances are attributable to timing (invoices not processed and posted to the end of June) or in some cases such as Protective Inspections, budget and actual do not match up because of staff restructuring between budget units subsequent to the finalization of the budget for 2014.

Projection to Year End

The projection to year end is built on the June $30^{\text {th }}$. statements and reflects adjustments for processing as well as variances which we expect to follow on through the year. Overall, we

DEPARTMENT OF FINANCE
anticipate a surplus on operations in excess of $\$ 3.5$ million, largely attributable to the boost in Grants in Lieu of Taxes revenue as noted above.

Misery Bresmo
Robert G. Bishop, C.A.
Deputy City Manager, Financial Management

RGB/fc
Attach.

City of St. John's
 Report on Revenue and Expenditure
 Executive Summary

June 30, 2014

	Actual	Estimates	Variance	Variance
Revenue				
Taxation	\$106,279,478	\$106,512,248	$(232,770)$	-0.2\%
Grants other governments	11,772,548	12,238,941	$(466,393)$	-3.8\%
Grants in lieu of taxes	8,575,452	4,685,000	3,890,452	83.0\%
Sales of goods \& services	10,195,488	9,701,350	494,138	5.1\%
Other revenue own sources	6,066,129	5,199,260	866,869	16.7\%
Other transfers	115,495	0	115,495	\#N/A
Total Revenue	\$143,004,590	\$138,336,799	\$4,667,791	3.4\%
Expenditure				
General government services	\$15,557,476	\$17,706,780	$(2,149,304)$	-12.1\%
Protective services	12,968,614	12,968,092	522	0.0\%
Transportation services	26,187,928	22,971,389	3,216,539	14.0\%
Environmental health services	29,569,202	32,809,268	$(3,240,066)$	-9.9\%
Environmental development services	5,040,773	5,529,142	$(488,369)$	-8.8\%
Recreation and cultural services	8,179,320	9,158,288	$(978,968)$	-10.7\%
Fiscal services	14,281,492	14,296,374	$(14,882)$	-0.1\%
Transfers to reserves \& other funds	-2,820,371	-2,500,000	$(320,371)$	12.8\%
	108,964,434	112,939,333	$(3,974,899)$	-3.5\%
Payroll Costs	749,457	-63,864	813,321	-1273.5\%
Fleet - mechanical	1,264,120	729,493	534,627	-73.3\%
Total Expenditure	\$110,978,011	\$113,604,962	-\$2,626,951	2.3\%
Net Surplus (Deficit)	32,026,579	24,731,837	7,294,742	

	CITY OF ST. JOHN'S REVENUE REPORT			
	Y.T.D. Budget JUNE	Y.T.D. Actual JUNE	Variance Favourable (Unfavourable)	\% Variance
TAXATION:				
1112 RESIDENTIAL REALTY	41,800,000	41,876,200	76,200	0.18\%
1121 BUSINESS REALTY	30,100,000	29,637,721	-462,279	-1.54\%
1400 BUSINESS OCCUPANCY		-24,880	-24,880	0.00\%
4410 WATER SALES \& TAX	25,512,248	26,759,202	1,246,954	4.89\%
1940 ACCOMMODATION TAX	1,800,000	954,492	-845,508	-46.97\%
1991 UTILITY TAX	7,300,000	7,076,743	-223,257	-3.06\%
	106,512,248	106,279,478	-232,770	-0.22\%
GRANTS IN LIEU OF TAXES:				
2100 GOVT. OF CANADA	3,100,000	6,326,878	3,226,878	104.09\%
2200 GOVT.CANADA AGENCIES	535,000	650,000	115,000	21.50\%
2300 WATER TAX GRANT	1,050,000	1,598,574	548,574	52.25\%
2400 GOVT.NFLD.AGENCIES			0	0.00\%
	4,685,000	8,575,452	3,890,452	83.04\%
SALES GOODS \& SERVICES:				
4100 GENERAL GOVERNMENT	872,256	730,975	-141,281	-16.20\%
4300 TRANSPORTATION	1,153,914	1,151,754	-2,160	-0.19\%
4400 ENVIRONMENTAL HEALTH	358,014	852,466	494,452	138.11\%
4435 TIPPING FEES	6,227,520	6,502,201	274,681	4.41\%
4700 RECREATION	848,978	779,590	-69,388	-8.17\%
4900 OTHER GENERAL	240,668	178,502	-62,166	-25.83\%
	9,701,350	10,195,488	494,138	5.09\%
OTHER REVENUE OWN SOURCES:				
5120 BUSINESS LICENCES	77,685	122,297	44,612	57.43\%
5170 CONSTRUCTION PERMITS	1,709,334	1,940,958	231,624	13.55\%
5200 FINES	1,128,726	1,100,897	-27,829	-2.47\%
5300 RENTS \& CONCESSIONS	1,473,326	1,729,756	256,430	17.40\%
5500 INVESTMENT INTEREST	10,191	266,355	256,164	2513.63\%
5600 INTEREST TAX ARREARS	799,998	905,866	105,868	13.23\%
	5,199,260	6,066,129	866,869	16.67\%
GRANTS OTHER GOVERNMENTS:				
7530 RECOVERY DEBT CHARGES	9,256,427	9,146,140	-110,287	-1.19\%
7550 REAL PROGRAM GRANTS	90,000	238,236	148,236	164.71\%
7555 NPH SUBSIDITY	520,150	56,165	-463,985	-89.20\%
7598 MUNICIPAL OPR. GRANT			0	0.00\%
7682 RENTAL HOUSING			0	0.00\%
7110 FEDERAL GAS TAX REBATE	2,091,426	2,091,426	0	0.00\%
7100 OTHER GRANTS	66,738	225,884	159,146	238.46\%
7107 CMHC MORTGAGE SUBSIDIT	214,200	14,697	-199,503	-93.14\%
	12,238,941	11,772,548	-466,393	-3.81\%
OTHER TRANSFERS:				
9201 ASSESSMENTS		115,495	115,495	0.00\%
7999 TRANSFER TO RESERVES			0	0.00\%
9300 TRANSFER TO RESERVES			0	0.00\%
	0	115,495	115,495	0.00\%
TOTAL REVENUE	\$138,336,799	\$143,004,590	4,667,791	3.37\%

CITY OF ST. JOHN'S EXPENDITURE REPORT

	Y-T-D Budget JUNE	Y-T-D Actual JUNE	Favorable (Unfavorable)	\% Variance
GENERAL GOVERNMENT:				
GENERAL ADMINISTRATIVE:				
1111 MAYOR AND COUNCIL	355,777	359,392	-3,615	-1.02\%
1112 MAYOR'S OFFICE	5,940	9,988	-4,048	-68.15\%
1115 CIVIC EVENTS \& RECEPTIONS	91,906	75,751	16,155	17.58\%
2531 EMERGENCY PREPAREDNESS	65,809	57,236	8,573	13.03\%
1210 BUISNESS PLANNING \& OPERATIONAL REVIEW			0	\#N/A
1211 ADMINISTRATION - STRATEGY \& ENGAGEMEN ${ }^{-1}$	241,485	77,767	163,718	67.80\%
1212 ADMINISTRATION - ADMIN. SERVICES	236,909	269,817	-32,908	-13.89\%
1213 PERSONNEL AND LABOUR RELATIONS	237,452	158,591	78,861	33.21\%
1214 BENEFITS ADMINISTRATION	101,438	96,004	5,434	5.36\%
1215 CITY MANAGER'S OFFICE	189,717	210,130	-20,413	-10.76\%
1216 EMPLOYEE WELLNESS	397,924	374,304	23,620	5.94\%
1217 EMPLOYEE DEVELOPMENT	235,842	178,468	57,374	24.33\%
1218 EMPLOYEE RELATIONS	411,454	344,127	67,327	16.36\%
1219569 HR ADMINISTRATION	166,387	236,721	-70,334	-42.27\%
1220 LEGAL SERVICES	470,899	383,480	87,419	18.56\%
1221 ADMINISTRATION - FINANCE	239,548	332,264	-92,716	-38.70\%
1222 FINANCIAL SERVICES	672,461	656,752	15,709	2.34\%
1223 BUDGETARY SERVICES	168,179	163,541	4,638	2.76\%
1224 ASSET REPORTING	46,661	45,954	707	1.52\%
1231 ASSESSMENT	715,742	694,343	21,399	2.99\%
1241 REVENUE ACCOUNTING	602,576	574,417	28,159	4.67\%
1250 PROPERTY MANAGEMENT	233,572	216,483	17,089	7.32\%
1251 OFFICE SERVICES	465,683	549,821	-84,138	-18.07\%
1252 MAINTENANCE OF CITY HALL	367,606	324,383	43,223	11.76\%
1253 ELECTRICAL MAINTENANCE	338,485	312,376	26,109	7.71\%
1254 MAINTENANCE CITY HALL ANNEX	107,147	82,359	24,788	23.13\%
1255 BUILDING \& FACILITY MAINTENANCE	192,668	4,577	188,091	97.62\%
1256 MAINTENANCE FIRE DEPARTMENT	167,085	113,009	54,076	32.36\%
1257 MAINTENANCE RAILWAY COASTAL MUSEUM	104,199	92,897	11,302	10.85\%
1258 MTCE CIVIC \# 245 FRESHWATER RD	105,043	127,092	-22,049	-20.99\%
1259 MAINTENANCE PROPERTY ASSESSMENT BUIL	29,001	20,811	8,190	28.24\%
1261 PURCHASING	321,096	318,075	3,021	0.94\%
1262 STORES-INVENTORY	385,879	472,005	-86,126	-22.32\%
1268 ADMIN. CORPORATE SERVICES	145,293	115,466	29,827	20.53\%
1269 INTERNAL AUDIT	128,775	118,891	9,884	7.68\%
1270 CORPORATE COMMUNICATIONS	459,848	338,264	121,584	26.44\%
1272 INFORMATION SERVICES	2,142,382	1,879,583	262,799	12.27\%
1274 SERVICE CENTRE	859,512	816,044	43,468	5.06\%
	12,207,380	11,201,183	1,006,197	8.24\%
PENSIONS \& BENEFITS:				
1290 PENSIONS	650,621	624,439	26,182	4.02\%
1297 LUMPSUM SICK LEAVE	399,996	546,498	-146,502	-36.63\%
	1,050,617	1,170,937	-120,320	-11.45\%
ENGINEERING:				
1311 ADMIN. - ENG. \& PLANNING		108,420	-108,420	\#N/A
1313 DEVELOPMENT CONTROL	697,329	362,297	335,032	48.05\%
1314 SURVEYING	263,447	251,945	11,502	4.37\%
1315 TRAFFIC \& TRANSPORTATION	1,707,505	748,959	958,546	56.14\%
1316 STENOGRAPHIC - CLERICAL SUPPORT	359,043	149,001	210,042	58.50\%
1317 ENVIRONMENTAL INITIATIVES		901	-901	\#N/A
1318 LAND INFORMATION SYSTEMS	622,823	568,840	53,983	8.67\%

CITY OF ST. JOHN'S EXPENDITURE REPORT

	Y-T-D Budget JUNE	Y-T-D Actual JUNE	Favorable (Unfavorable)	\% Variance
1319 CONSTRUCTION	670,991	634,186	36,805	5.49\%
	4,321,138	2,824,549	1,496,589	34.63\%
OTHER GENERAL GOVERNMENT:				
1931 LIABILITY INSURANCE	127,645	360,807	-233,162	-182.66\%
1995 MUNICIPAL GENERAL ELECTIONS			0	\#N/A
	127,645	360,807	-233,162	-182.66\%
TOTAL GENERAL GOV'T	17,706,780	15,557,476	2,149,304	12.14\%
PROTECTIVE SERVICES:				
FIRE \& TRAFFIC:				
2141 TRAFFIC ENFORCEMENT	1,398,906	1,304,684	94,222	6.74\%
2142 CROSSING GUARD PROGRAM	64,338	39,698	24,640	38.30\%
2491 FIRE PROTECTION	8,830,455	8,887,413	-56,958	-0.65\%
2498 MAINTENANCE PROPERTY MANAGEMENT MAI	35,412	191,692	-156,280	-441.32\%
	10,329,111	10,423,487	-94,376	-0.91\%
PROTECTIVE INSPECTIONS:				
2921 ADMINISTRATIVE - BUILDING DEPT.	336,179	206,542	129,637	38.56\%
2922 PLANS \& TECHNICAL REVIEW	1,016,644	350,123	666,521	65.56\%
2923 ELECTRICAL INSPECTION	365,126	341,028	24,098	6.60\%
2924 PLUMBING INSPECTION	160,230	152,996	7,234	4.51\%
2925 STENOGRAPHIC-CLERICAL		194,133	-194,133	\#N/A
2926 PLUMBING MAINTENANCE	43,296	48,725	-5,429	-12.54\%
2927 BUILDING INSPECTIONS \& MIMIUMN STANDARDS		575,012	-575,012	\#N/A
2929 TAXI \& BY-LAW INSPECTIONS	100,206	91,927	8,279	8.26\%
	2,021,681	1,960,486	61,195	3.03\%
OTHER PROTECTIVE SERVICES:				
2931 ANIMAL \& PEST CONTROL	568,986	543,476	25,510	4.48\%
2932 ANIMAL CONTROL SHELTER MTCE.	48,314	41,165	7,149	14.80\%
	617,300	584,641	32,659	5.29\%
TOTAL PROTECTIVE SERVICES	12,968,092	12,968,614	-522	0.00\%

TRANSPORTATION SERVICES:
STREETS DEPARTMENT:

3011 ADMINISTRATION PUBLIC WORKS	601,799
3211 ADMIN. - STREETS \& PARKS	$1,037,679$
3221 MAINTENANCE OF ROADS \& SIDEWALKS	$1,993,163$
3231 SNOW CLEARING	$7,744,021$
3241 WORKS DEPOT MAINTENANCE	709,919
3242 MTCE OF ASPHALT RECYCLING FACILITY	7,854
3252 MAINTENANCE OF TRAFFIC SIGNS \& LIGHTS	
3253 STREET MARKINGS	91,947
3262 STREET CLEANING BY HAND	$\mathbf{1 2 , 1 8 6 , 3 8 2}$

OTHER TRANSPORTATION SERVICES:
3521 PARKING METERS
3561 STREET LIGHTING
3591 SUBSIDY TO METROBUS
3592 PARA-TRANSIT SYSTEM

TOTAL TRANS. SERVICES
551,178
$2,212,500$
$6,929,703$
$1,091,626$
$10,785,007$

39,430	511,748	92.85%
$1,766,870$	445,630	20.14%
$6,910,212$	19,491	0.28%
647,100	444,526	40.72%
$\mathbf{9 , 3 6 3 , 6 1 2}$	$\mathbf{1 , 4 2 1 , 3 9 5}$	$\mathbf{1 3 . 1 8 \%}$
$\mathbf{2 6 , 1 8 7 , 9 2 8}$	$\mathbf{- 3 , 2 1 6 , 5 3 9}$	$\mathbf{- 1 4 . 0 0 \%}$

CITY OF ST. JOHN'S
 EXPENDITURE REPORT

	Y-T-D Budget JUNE	Y-T-D Actual JUNE	Favorable (Unfavorable)	\% Variance
ENVIRONMENTAL HEALTH: WATER DEPARTMENT:				
4111 ADMIN. - ENVIRONMENTAL SERVICES	1,107,282	1,054,413	52,869	4.77\%
4121 PHLP WATER TREATMENT PLANT	895,788	16,651	879,137	98.14\%
4122 WINSOR LAKE TREATMENT PLANT	3,694,454	3,336,535	357,919	9.69\%
4123 REGIONAL WATER SYSTEM	8,800,980	8,451,016	349,964	3.98\%
4124 MTCE. PVR/BOOSTER STATIONS	229,789	165,481	64,308	27.99\%
4131 MTCE. OF WATER \& SEWER SERVICES	4,037,843	3,447,091	590,752	14.63\%
4132 WATER METERING	188,925	152,254	36,671	19.41\%
	18,955,061	16,623,441	2,331,620	12.30\%
SEWER DEPARTMENT:				
4225 WASTE WATER TREATMENT PLANT	4,202,981	3,667,447	535,534	12.74\%
4226 SEWER PUMP STATIONS	338,185	364,295	-26,110	-7.72\%
	4,541,166	4,031,742	509,424	11.22\%
SANITARY DEPARTMENT:				
4321 GARBAGE COLLECTION	3,175,321	3,747,790	-572,469	-18.03\%
4322 WASTE DIVERSION PUBLIC AWARENESS	84,437	91,396	-6,959	-8.24\%
4323 CURB SIDE RECYCLING PROGRAM		1,334	-1,334	\#N/A
4331 GARBAGE \& LITTER DISPOSAL	2,923,613	1,803,052	1,120,561	38.33\%
4332 BLDG. MTCE. ROBIN HOOD BAY	315,855	89,612	226,243	71.63\%
4333 MATERIALS RECOVERY FACILITY	917,005	648,387	268,618	29.29\%
4334 RESIDENTAL DROP OFF FACILITY	415,026	249,436	165,590	39.90\%
4335 EASTERN WASTE MGNT. REGIONAL SERVICE	1,481,784	2,283,012	-801,228	-54.07\%
	9,313,041	8,914,019	399,022	4.28\%
TOTAL ENVIRON. HEALTH	32,809,268	29,569,202	3,240,066	9.88\%

ENVIRONMENTAL DEVELOPMENT:

PLANNING:
6113 PLANNING \& DEVELOPMENT
6118 DOWNTOWN REVITALIZATION

454,706	527,949
125,000	124,923
355,712	151,771
935,418	804,643

122,906
HOUSING AND REAL ESTATE:
6330 REAL ESTATE - LEGAL
6341 REAL ESTATE
6342 RENTAL HOUSING PROJECTS
6343 TRANSFERS ACCOMMODATION TAX
6360 NON-PROFIT HOUSING
6391 NON-PROFIT HOUSING ADMINISTRATION
6392 NON-PROFIT HOUSING MAINTENANCE
97,272
624,996
2,230,385
142,087
329,399
3,563,745

114,652	8,254	6.72%
1,385	15,315	91.71%
106,807	$-9,535$	-9.80%
625,000	-4	0.00%
$2,005,796$	224,589	10.07%
134,110	7,977	5.61%
297,509	31,890	9.68%
$\mathbf{3 , 2 8 5 , 2 5 9}$	$\mathbf{2 7 8 , 4 8 6}$	$\mathbf{7 . 8 1 \%}$

TOURISM \& ECONOMIC DEVELOPMENT:
6611 ADMINISTRATION ECONOMIC DEVELOP
6612 TOURISM DEVELOPMENT
311,269

268,205	43,064	13.83%
432,951	20,964	4.62%
50,110	21,361	29.89%
19,025	$-19,025$	\#N/A

CITY OF ST. JOHN'S
 EXPENDITURE REPORT

	Y-T-D Budget JUNE	Y-T-D Actual JUNE	Favorable (Unfavorable)	\% Variance
6616 ECONOMIC DEVELOPMENT		14,699	-14,699	\#N/A
6617 TOURISM RESEARCH	159,454	143,696	15,758	9.88\%
6618 PROJECT \& EVENT COORDINATION	33,870	22,185	11,685	34.50\%
6619 BUSINESS SERVICES			0	\#N/A
6620 MOVED TO 1270			0	\#N/A
6624 MTCE. GENTARA BLDG.			0	\#N/A
6625 MAINTENANCE - QUIDI VIDI			0	\#N/A
	1,029,979	950,871	79,108	7.68\%
TOTAL ENVIR DEVELOPMENT	5,529,142	5,040,773	488,369	8.83\%

RECREATION \& PARKS:
PARKS DIVISION:
7121 MAINTENANCE OF MUNICIPAL PARKS
7122 MTCE. OF PASSIVE OPEN SPACES
7123 MAINTENANCE OF SPORTS FACILITIES
7124 MAINTENANCE OF PLAYGROUNDS
7125 MTCE. OF BUCKMASTERS REC. CENTRE
7126 HORTICULTURAL MAINTENANCE
7127 MAINTENANCE OF ROTARY PARK
7130 MAINTENANCE OF H.G.R. MEWS CENTRE
7131 AQUATIC MAINTENANCE - PARKS
7133 MTCE. ROTAY PARK CHALET
7134 MTCE. SPORTS BUILDINGS
7135 SNOW CLEARING STEPS AND R.O.W.
7136 MTCE. SHEA HEIGHTS COMMUNITY CENTER
7137 WEDGEWOOD PARK FAC. MTCE.
7138 MTCE. KILBRIDE COMMUNITY CENTER
7139 MTCE SOUTHLANDS COMMUNITY CENTER
7141 ANNA TEMPLETON CENTER - MTCE.
7225 BOWRING BARK BLDG. MAINTENANCE

RECREATION:
7301 RECREATION ADMINISTRATION
7305 FAMILY \& LEISURE SERVICES
7311 COMMUNITY DEVELOPMENT ADMINISTRATION
7315 RECREATION INFORMATION SERVICES
7321 OPERATIONS SUMMER REC. PROGRAM
7322 OPERATION OF BOWRING PARK POOL
7324 FACILITIES DIVISION ADMINISTRATION
7325 OPERATION OF H.G.R. MEWS CENTRE
7329 H.G.R. MEWS CENTRE - AQUATICS \& FITNESS
7330 GOULDS RECREATION ASSOCIATION
7331 WEDGEWOOD PARK FACILITY OPERATIONS
7332 WEDGEWOOD PARK - AQUATICS \& FITNESS P
7333 SENIORS PROGAMS \& SERVICES
7334 OPERATION OF BANNERMAN PARK POOL
7335 OTHER FACILITY OPERATIONS
7336 SHEA HEIGHTS COMMUNITY CENTRE
7337 SOUTHLANDS COMMUNITY CENTER
7338 KILBRIDE COMMUNITY CENTRE
7341 SPORT AND COMMUNICATION
854,317
$1,072,764$
278,338
371,896
48,813
489,205
36,671
103,265
97,834
21,433
113,624
345,292
35,456
61,049
35,490
33,944
9,680
67,046
$4,076,117$

390,769	484,361	$-93,592$	-23.95%
684,688	666,203	18,485	2.70%
490,019	415,286	74,733	15.25%
59,178	9,500	49,678	83.95%
69,535	13,280	56,255	80.90%
17,189	5,913	11,276	65.60%
236,972	237,133	-161	-0.07%
282,861	316,983	$-34,122$	-12.06%
279,470	279,736	-266	-0.10%
160,860	120,510	40,350	25.08%
173,130	188,742	$-15,612$	-9.02%
212,152	209,836	2,316	1.09%
59,901	45,755	14,146	23.62%
10,118		10,118	100.00%
77,036	66,078	10,958	14.22%
78,126	78,920	-794	-1.02%
67,777	14,045	53,732	79.28%
84,456	81,203	3,253	3.85%
373,086	285,238	87,848	23.55%
$3,807,323$	$3,518,722$	$\mathbf{2 8 8 , 6 0 1}$	7.58%

CITY OF ST. JOHN'S
 EXPENDITURE REPORT

	Y-T-D Budget JUNE	Y-T-D Actual JUNE	Favorable (Unfavorable)	$\begin{aligned} & \text { \% } \\ & \text { Variance } \end{aligned}$
OTHER RECREATIONAL \& CULTURAL SERVICES:				
7445 CIVIC CENTRE CORPORATION			0	\#N/A
7551 GRANTS AND SUBSIDIES TO ORGANIZATIONS	617,500	917,177	-299,677	-48.53\%
7911 MUNICIPAL ARCHIVES	127,608	113,233	14,375	11.26\%
7910 CULTURAL DEVELOPMENT	298,725	249,359	49,366	16.53\%
7912 RAILWAY COASTAL MUSEUM	231,015	196,280	34,735	15.04\%
	1,274,848	1,476,049	-201,201	-15.78\%
TOTAL RECREATION \& CULTURAL	9,158,288	8,179,320	978,968	10.69\%
FISCAL \& TRANSFERS:				
DEBT CHARGES:				
8111 SHORT TERM BORROWINGS	90,000	24,503	65,497	72.77\%
8121 LONG TERM DEBT CHARGES	14,329	14,329	0	0.00\%
8131 DEBENTURE DEBT CHARGES	14,127,045	14,182,585	-55,540	-0.39\%
8191 OTHER DEBT CHARGES	65,000	60,075	4,925	7.58\%
TOTAL FISCAL SERVICES	14,296,374	14,281,492	14,882	0.10\%
OTHER TRANSFERS:				
8211 ALLOWANCE FOR DOUBTFUL ACCOUNTS		18,645	-18,645	\#N/A
8213 SNOW AND ICE RESERVE			0	\#N/A
8990 CONTRIBUTIONS TO CAPITAL FUND	-2,500,000	-2,839,016	339,016	-13.56\%
9002 DEFICIT FUNDING			0	\#N/A
9300 HARBOUR CLEAN-UP RESERVE			0	\#N/A
0000 WATER TREATMENT RESERVE			0	\#N/A
TOTAL OTHER TRANSFERS	-2,500,000	-2,820,371	320,371	-12.81\%
TOTAL EXPENDITURE:	112,939,333	108,964,434	3,974,899	3.52\%

TRANSFERS TO OTHER DEPARTMENTS:

PAYROLL COSTS:

1295 EMPLOYEE FRINGE BENEFITS
MECHANICAL:
3111 ADMINISTRATION - MECHANICAL DEPT 3121 VEHICLE \& EQUIPMENT MAINTENANCE 3123 ROBIN HOOD BAY HEAVY EQUIPMENT 3129 VEHICLE FLEET RENTAL

TOTAL MECHANICAL
TOTAL EXPENDITURE:

$-63,864$	749,457	$-813,321$	1273.52%
733,046	776,138	$-43,092$	-5.88%
$4,179,567$	$4,793,001$	$-613,434$	-14.68%
316,880	321,548	$-4,668$	-1.47%
$-4,500,000$	$-4,626,567$	126,567	-2.81%
$\mathbf{7 2 9 , 4 9 3}$	$\mathbf{1 , 2 6 4 , 1 2 0}$	$\mathbf{- 5 3 4 , 6 2 7}$	$\mathbf{- 7 3 . 2 9 \%}$
$\$ 113,604,962$	$\$ 110,978,011$	$\mathbf{2 , 6 2 6 , 9 5 1}$	$\mathbf{2 . 3 1 \%}$

City of St. John's

Report on Revenue and Expenditure Executive Summary

	Budget 2014	$\begin{gathered} \text { To } \\ \text { Year End } \end{gathered}$	Variance Favorable (Unfavorable)
Revenue			
Taxation	\$205,724,601	\$205,241,831	$(482,770)$
Grants other governments	26,794,275	26,972,882	178,607
Grants in lieu of taxes	5,735,000	9,625,452	3,890,452
Sales of goods \& services	19,366,516	19,560,654	194,138
Other revenue own sources	10,471,509	11,338,378	866,869
Other transfers	4,194,778	4,310,273	115,495
Total Revenue	\$272,286,679	\$277,049,470	\$4,762,791
Expenditure			
General government services	\$34,879,741	\$33,320,438	1,559,304
Protective services	29,403,800	29,254,322	149,478
Transportation services	52,627,031	54,393,570	$(1,766,539)$
Environmental health services	71,094,353	68,254,287	2,840,066
Environmental development services	11,369,399	11,031,030	338,369
Recreation and cultural services	19,886,206	19,407,238	478,968
Fiscal services	31,127,282	31,112,400	14,882
Transfers to reserves \& other funds	16,964,952	16,644,581	320,371
	267,352,764	263,417,867	3,934,897
Payroll Costs	6,073,675	6,886,996	$(813,321)$
Fleet - mechanical	-1,139,760	2,994,868	$(4,134,628)$
Total Expenditure	\$272,286,679	\$273,299,731	-\$1,013,052
Net Surplus (Deficit)	0	3,749,740	3,749,740

	CITY OF ST. JOHN'S REVENUE PROJECTION June 30, 2014		
	Approved Budget 2014	Projected To Year End	Variance
TAXATION:			
1112 RESIDENTIAL REALTY	\$83,600,000	83,676,200	76,200
1121 BUSINESS REALTY	\$60,200,000	59,737,721	-462,279
1400 BUSINESS OCCUPANCY	\$0	-24,880	-24,880
4410 WATER SALES \& TAX	\$51,024,601	51,021,555	-3,046
1940 ACCOMMODATION TAX	\$3,600,000	3,754,492	154,492
1991 UTILITY TAX	\$7,300,000	7,076,743	-223,257
	205,724,601	205,241,831	-482,770
GRANTS IN LIEU OF TAXES:			
2100 GOVT. OF CANADA	\$3,100,000	6,326,878	3,226,878
2200 GOVT.CANADA AGENCIES	\$535,000	650,000	115,000
2300 WATER TAX GRANT	\$2,100,000	2,648,574	548,574
2400 GOVT.NFLD.AGENCIES		0	0
	5,735,000	9,625,452	3,890,452
SALES GOODS \& SERVICES:			
4100 GENERAL GOVERNMENT	\$1,745,960	1,604,679	-141,281
4300 TRANSPORTATION	\$2,307,916	2,305,756	-2,160
4400 ENVIRONMENTAL HEALTH	\$666,046	860,498	194,452
4435 TIPPING FEES	\$12,455,052	12,729,733	274,681
4700 RECREATION	\$1,706,118	1,636,730	-69,388
4900 OTHER GENERAL	\$485,424	423,258	-62,166
	19,366,516	19,560,654	194,138
OTHER REVENUE OWN SOURCES:			
5120 BUSINESS LICENCES	\$163,980	208,592	44,612
5170 CONSTRUCTION PERMITS	\$3,418,720	3,650,344	231,624
5200 FINES	\$2,257,484	2,229,655	-27,829
5300 RENTS \& CONCESSIONS	\$3,010,970	3,267,400	256,430
5500 INVESTMENT INTEREST	\$20,355	276,519	256,164
5600 INTEREST TAX ARREARS	\$1,600,000	1,705,868	105,868
	10,471,509	11,338,378	866,869
GRANTS OTHER GOVERNMENTS:			
7530 RECOVERY DEBT CHARGES	\$20,722,099	20,611,812	-110,287
7550 REAL PROGRAM GRANTS	\$225,000	373,236	148,236
7555 NPH SUBSIDITY	\$1,009,840	995,855	-13,985
7598 MUNICIPAL OPR. GRANT		0	0
7682 RENTAL HOUSING		0	0
7110 FEDERAL GAS TAX REBATE	\$4,182,853	4,182,853	0
7100 OTHER GRANTS	\$231,125	390,271	159,146
7107 CMHC MORTGAGE SUBSIDIT	\$423,358	418,855	-4,503
	26,794,275	26,972,882	178,607
OTHER TRANSFERS:			
9201 ASSESSMENTS	600,000	715,495	115,495
7999 TRANSFER TO RESERVES	0	0	0
9300 TRANSFER TO RESERVES	3,594,778	3,594,778	0
	4,194,778	4,310,273	115,495
TOTAL REVENUE	\$272,286,679	\$277,049,470	\$4,762,791

CITY OF ST. JOHN'S EXPENDITURE PROJECTION

June 30, 2014
Approved
Budget

2014
Projected
To
Year End

Favourable (Unfavourable) Variance

GENERAL GOVERNMENT:
GENERAL ADMINISTRATIVE:
1111 MAYOR AND COUNCIL
1112 MAYOR'S OFFICE
1115 CIVIC EVENTS \& RECEPTIONS
2531 EMERGENCY PREPAREDNESS
1210 BUISNESS PLANNING \& OPERATIONAL REVIEW
1211 ADMINISTRATION - STRATEGY \& ENGAGEMEN
1212 ADMINISTRATION - ADMIN. SERVICES
1213 PERSONNEL AND LABOUR RELATIONS
1214 BENEFITS ADMINISTRATION
1215 CITY MANAGER'S OFFICE
1216 EMPLOYEE WELLNESS
1217 EMPLOYEE DEVELOPMENT
1218 EMPLOYEE RELATIONS
1219569 HR ADMINISTRATION
1220 LEGAL SERVICES
1221 ADMINISTRATION - FINANCE
1222 FINANCIAL SERVICES
1223 BUDGETARY SERVICES
1224 ASSET REPORTING
1231 ASSESSMENT
1241 REVENUE ACCOUNTING
1250 PROPERTY MANAGEMENT
1251 OFFICE SERVICES
1252 MAINTENANCE OF CITY HALL
1253 ELECTRICAL MAINTENANCE
1254 MAINTENANCE CITY HALL ANNEX
1255 BUILDING \& FACILITY MAINTENANCE
1256 MAINTENANCE FIRE DEPARTMENT
1257 MAINTENANCE RAILWAY COASTAL MUSEUM
1258 MTCE CIVIC \# 245 FRESHWATER RD
1259 MAINTENANCE PROPERTY ASSESSMENT BUIL
1261 PURCHASING
1262 STORES-INVENTORY
1268 ADMIN. CORPORATE SERVICES
1269 INTERNAL AUDIT
1270 CORPORATE COMMUNICATIONS
1272 INFORMATION SERVICES
1274 SERVICE CENTRE
PENSIONS \& BENEFITS:
1290 PENSIONS
1297 LUMPSUM SICK LEAVE

$\$ 661,564$	665,179	$-3,615$
$\$ 11,890$	15,938	$-4,048$
$\$ 183,851$	167,696	16,155
$\$ 117,929$	109,356	8,573
	0	0
$\$ 820,456$	806,738	13,718
$\$ 469,381$	502,289	$-32,908$
$\$ 460,361$	381,500	78,861
$\$ 205,727$	200,293	5,434
$\$ 372,599$	393,012	$-20,413$
$\$ 792,236$	768,616	23,620
$\$ 526,644$	469,270	57,374
$\$ 826,439$	759,112	67,327
$\$ 644,598$	654,932	$-10,334$
$\$ 923,522$	911,103	12,419
$\$ 600,931$	603,647	$-2,716$
$\$ 1,343,932$	$1,328,223$	15,709
$\$ 334,458$	329,820	4,638
$\$ 94,171$	93,464	707
$\$ 1,432,379$	$1,410,980$	21,399
$\$ 1,195,872$	$1,167,713$	28,159
$\$ 468,678$	451,589	17,089
$\$ 933,383$	$1,017,521$	$-84,138$
$\$ 735,497$	692,274	43,223
$\$ 684,679$	658,570	26,109
$\$ 214,933$	190,145	24,788
$\$ 405,357$	317,266	88,091
$\$ 346,870$	292,794	54,076
$\$ 203,703$	192,401	11,302
$\$ 215,002$	237,051	$-22,049$
$\$ 58,007$	49,817	8,190
$\$ 646,003$	642,982	3,021
$\$ 808,976$	895,102	$-86,126$
$\$ 290,628$	260,801	29,827
$\$ 254,642$	244,758	9,884
$\$ 478,075$	471,491	6,584
$\$ 4,018,360$	$4,005,561$	12,799
$\$ 1,715,356$	$1,671,888$	43,468
$\mathbf{2 4 , 4 9 7 , 0 8 9}$	$24,030,892$	466,197
$\$ 1,301,260$	$1,275,078$	26,182
$\$ 1,520,000$	$1,666,502$	$-146,502$
$2,821,260$	$2,941,580$	$-120,320$

ENGINEERING:

1311	ADMIN. - ENG. \& PLANNING	$\$ 334,829$	393,249
1313	DEVELOPMENT CONTROL	$\$ 1,392,339$	$1,357,307$
1314	SURVEYING	$\$ 530,206$	518,704
1315 TRAFFIC \& TRANSPORTATION	$\$ 1,613,432$	654,886	35,032
1316 STENOGRAPHIC - CLERICAL SUPPORT	$\$ 339,305$	129,263	958,546
1317 ENVIRONMENTAL INITIATIVES	$\$ 0$	210,042	
1318 LAND INFORMATION SYSTEMS	$\$ 1,229,682$	$1,175,699$	-901

CITY OF ST. JOHN'S
 EXPENDITURE PROJECTION

TRANSPORTATION SERVICES:
STREETS DEPARTMENT:

```
3 0 1 1 ~ A D M I N I S T R A T I O N ~ P U B L I C ~ W O R K S ~
3211 ADMIN. - STREETS & PARKS
3221 MAINTENANCE OF ROADS & SIDEWALKS
3 2 3 1 ~ S N O W ~ C L E A R I N G ~
3241 WORKS DEPOT MAINTENANCE
3242 MTCE OF ASPHALT RECYCLING FACILITY
3252 MAINTENANCE OF TRAFFIC SIGNS & LIGHTS
3253 STREET MARKINGS
3262 STREET CLEANING BY HAND
```

OTHER TRANSPORTATION SERVICES:
3521 PARKING METERS
3561 STREET LIGHTING
3591 SUBSIDY TO METROBUS
3592 PARA-TRANSIT SYSTEM

TOTAL TRANS. SERVICES

$\$ 904,450$	734,566	169,884
$\$ 2,441,135$	$2,719,402$	$-278,267$
$\$ 7,636,249$	$7,869,001$	$-232,752$
$\$ 16,027,130$	$16,626,262$	$-599,132$
$\$ 1,440,567$	$1,583,804$	$-143,237$
$\$ 15,660$	15,455	205
$\$ 600,516$	831,043	$-230,527$
$\$ 1,509,393$	$1,912,984$	$-403,591$
$\$ 244,516$	165,033	79,483
$30,819,616$	$32,457,550$	$-1,637,934$
$\$ 1,076,237$	$1,039,489$	36,748
$\$ 4,425,000$	$4,579,370$	$-154,370$
$\$ 14,122,906$	$14,103,415$	19,491
$\$ 2,183,272$	$2,213,746$	$-30,474$
$\mathbf{2 1 , 8 0 7 , 4 1 5}$	$\mathbf{2 1 , 9 3 6 , 0 2 0}$	$\mathbf{- 1 2 8 , 6 0 5}$
$\mathbf{5 2 , 6 2 7 , 0 3 1}$	$54,393,570$	$\mathbf{- 1 , 7 6 6 , 5 3 9}$

CITY OF ST. JOHN'S
 EXPENDITURE PROJECTION

June 30, 2014

Approved
Budget
2014
Projected
To

Year End

Favourable (Unfavourable) Variance

ENVIRONMENTAL HEALTH:
WATER DEPARTMENT:
4111 ADMIN. - ENVIRONMENTAL SERVICES
4121 PHLP WATER TREATMENT PLANT
4122 WINSOR LAKE TREATMENT PLANT
4123 REGIONAL WATER SYSTEM
4124 MTCE. PVR/BOOSTER STATIONS
4131 MTCE. OF WATER \& SEWER SERVICES
4132 WATER METERING

$\$ 2,279,659$	$2,226,790$	52,869
$\$ 1,775,875$	96,738	$1,679,137$
$\$ 7,378,804$	$7,020,885$	357,919
$\$ 17,864,933$	$17,514,969$	349,964
$\$ 481,152$	416,844	64,308
$\$ 8,925,781$	$9,135,029$	$-209,248$
$\$ 384,352$	347,681	36,671
$39,090,556$	$36,758,936$	$\mathbf{2 , 3 3 1 , 6 2 0}$

SEWER DEPARTMENT:
4225 WASTE WATER TREATMENT PLANT 4226 SEWER PUMP STATIONS

$\$ 10,680,072$	$10,144,538$	535,534
$\$ 678,303$	704,413	$-26,110$
$11,358,375$	$10,848,951$	509,424

SANITARY DEPARTMENT:
4321 GARBAGE COLLECTION
4322 WASTE DIVERSION PUBLIC AWARENESS
4323 CURB SIDE RECYCLING PROGRAM
4331 GARBAGE \& LITTER DISPOSAL
4332 BLDG. MTCE. ROBIN HOOD BAY
4333 MATERIALS RECOVERY FACILITY
4334 RESIDENTAL DROP OFF FACILITY
4335 EASTERN WASTE MGNT. REGIONAL SERVICE

TOTAL ENVIRON. HEALTH

$\$ 6,521,383$	$6,693,852$	$-172,469$
$\$ 168,931$	175,890	$-6,959$
$\$ 0$	1,334	$-1,334$
$\$ 7,730,151$	$7,809,590$	$-79,439$
$\$ 626,150$	599,907	26,243
$\$ 1,805,167$	$1,736,549$	68,618
$\$ 830,069$	664,479	165,590
$\$ 2,963,571$	$2,964,799$	$-1,228$
$\mathbf{2 0 , 6 4 5 , 4 2 2}$	$\mathbf{2 0 , 6 4 6 , 4 0 0}$	$\mathbf{- 9 7 8}$
$\mathbf{7 1 , 0 9 4 , \mathbf { 3 5 3 }}$	$\mathbf{6 8 , 2 5 4 , \mathbf { 2 8 7 }}$	$\mathbf{2 , 8 4 0 , 0 6 6}$

ENVIRONMENTAL DEVELOPMENT:
PLANNING:

6113 PLANNING \& DEVELOPMENT	$\$ 899,539$	972,782	$-73,243$
6118 DOWNTOWN REVITALIZATION	$\$ 250,000$	$\mathbf{7 7}$	
6211 ADMINISTRATION - COMMUNITY SERVICES	$\$ 717,713$	663,772	53,941
	$\mathbf{1 , 8 6 7 , 2 5 2}$	$\mathbf{1 , 8 8 6 , 4 7 7}$	$\mathbf{- 1 9 , 2 2 5}$
HOUSING AND REAL ESTATE:			
6330 REAL ESTATE - LEGAL	$\$ 245,820$	237,566	8,254
6341 REAL ESTATE	$\$ 16,700$	1,385	15,315
6342 RENTAL HOUSING PROJECTS	$\$ 493,544$	503,079	$-9,535$
6343 TRANSFERS ACCOMMODATION TAX	$\$ 1,250,000$	$1,250,004$	-4
6360 NON-PROFIT HOUSING	$\$ 4,516,723$	$4,292,134$	224,589
6391 NON-PROFIT HOUSING ADMINISTRATION	$\$ 275,873$	267,896	7,977
6392 NON-PROFIT HOUSING MAINTENANCE	$\$ 674,319$	642,429	31,890

TOURISM \& ECONOMIC DEVELOPMENT:

6611 ADMINISTRATION ECONOMIC DEVELOPMENT	$\$ 632,098$	589,034	43,064
6612 TOURISM DEVELOPMENT	$\$ 875,967$	855,003	20,964
6613 VISITOR'S SERVICES	$\$ 156,131$	134,770	21,361
6614 MEETINGS \& CONVENTIONS		19,025	$-19,025$

CITY OF ST. JOHN'S EXPENDITURE PROJECTION

	June 30, 2014 Approved Budget 2014	$\begin{aligned} & \text { Projected } \\ & \quad \text { To } \\ & \text { Year End } \end{aligned}$	Favourable (Unfavourable) Variance
6616 ECONOMIC DEVELOPMENT	\$0	14,699	-14,699
6617 TOURISM RESEARCH		-15,758	15,758
6618 PROJECT \& EVENT COORDINATION	\$0	-11,685	11,685
6619 BUSINESS SERVICES		0	0
6620 MOVED TO 1270		0	0
6624 MTCE. GENTARA BLDG.	\$299,202	299,202	0
6625 MAINTENANCE - QUIDI VIDI	\$65,770	65,770	0
	2,029,168	1,950,060	79,108
TOTAL ENVIR DEVELOPMENT	11,369,399	11,031,030	338,369

RECREATION \& PARKS:

PARKS DIVISION:

7121 MAINTENANCE OF MUNICIPAL PARKS	\$1,920,677	2,026,407	-105,730
7122 MTCE. OF PASSIVE OPEN SPACES	\$2,401,201	2,314,580	86,621
7123 MAINTENANCE OF SPORTS FACILITIES	\$655,827	629,175	26,652
7124 MAINTENANCE OF PLAYGROUNDS	\$811,205	850,931	-39,726
7125 MTCE. OF BUCKMASTERS REC. CENTRE	\$97,118	91,537	5,581
7126 HORTICULTURAL MAINTENANCE	\$1,101,375	966,110	135,265
7127 MAINTENANCE OF ROTARY PARK	\$89,824	78,968	10,856
7130 MAINTENANCE OF H.G.R. MEWS CENTRE	\$215,710	234,506	-18,796
7131 AQUATIC MAINTENANCE - PARKS	\$224,318	207,424	16,894
7133 MTCE. ROTAY PARK CHALET	\$42,999	37,677	5,322
7134 MTCE. SPORTS BUILDINGS	\$233,793	214,725	19,068
7135 SNOW CLEARING STEPS AND R.O.W.	\$593,921	616,171	-22,250
7136 MTCE. SHEA HEIGHTS COMMUNITY CENTER	\$69,824	54,606	15,218
7137 WEDGEWOOD PARK FAC. MTCE.	\$117,953	111,615	6,338
7138 MTCE. KILBRIDE COMMUNITY CENTER	\$70,914	66,135	4,779
7139 MTCE SOUTHLANDS COMMUNITY CENTER	\$67,860	45,695	22,165
7141 ANNA TEMPLETON CENTER - MTCE.	\$19,000	14,729	4,271
7225 BOWRING BARK BLDG. MAINTENANCE	\$134,041	115,001	19,040
	8,867,560	8,675,992	191,568

RECREATION:

7301	RECREATION ADMINISTRATION	\$781,944	875,536	-93,592
7305	FAMILY \& LEISURE SERVICES	\$1,361,673	1,343,188	18,485
7311	COMMUNITY DEVELOPMENT ADMINISTRATION	\$983,052	908,319	74,733
7315	RECREATION INFORMATION SERVICES	\$118,370	68,692	49,678
7321	OPERATIONS SUMMER REC. PROGRAM	\$309,404	253,149	56,255
7322	OPERATION OF BOWRING PARK POOL	\$103,242	91,966	11,276
7324	FACILITIES DIVISION ADMINISTRATION	\$473,852	474,013	-161
7325	OPERATION OF H.G.R. MEWS CENTRE	\$588,929	623,051	-34,122
7329	H.G.R. MEWS CENTRE - AQUATICS \& FITNESS	\$537,616	537,882	-266
7330	GOULDS RECREATION ASSOCIATION	\$160,860	120,510	40,350
7331	WEDGEWOOD PARK FACILITY OPERATIONS	\$351,417	367,029	-15,612
7332	WEDGEWOOD PARK - AQUATICS \& FITNESS P	\$412,310	409,994	2,316
7333	SENIORS PROGAMS \& SERVICES	\$126,295	112,149	14,146
7334	OPERATION OF BANNERMAN PARK POOL	\$70,002	59,884	10,118
7335	OTHER FACILITY OPERATIONS	\$153,414	142,456	10,958
7336	SHEA HEIGHTS COMMUNITY CENTRE	\$184,928	185,722	-794
7337	SOUTHLANDS COMMUNITY CENTER	\$153,364	99,632	53,732
7338	KILBRIDE COMMUNITY CENTRE	\$193,669	190,416	3,253
7341	SPORT AND COMMUNICATION	\$671,680	583,832	87,848
		7,736,021	7,447,420	288,601

CITY OF ST. JOHN'S EXPENDITURE PROJECTION

June 30, 2014

Approved	Projected	Favourable
Budget	To	(Unfavourable)
2014	Year End	Variance

OTHER RECREATIONAL \& CULTURAL SERVICES:
7445 CIVIC CENTRE CORPORATION
7551 GRANTS AND SUBSIDIES TO ORGANIZATIONS
7911 MUNICIPAL ARCHIVES
7910 CULTURAL DEVELOPMENT
7912 RAILWAY COASTAL MUSEUM

TOTAL RECREATION \& CULTURAL

$\$ 1,000,000$	$1,000,000$	0
$\$ 1,180,000$	$1,279,677$	$-99,677$
$\$ 255,229$	240,854	14,375
$\$ 385,298$	335,932	49,366
$\$ 462,098$	427,363	34,735
$\mathbf{3 , 2 8 2 , 6 2 5}$	$\mathbf{3 , 2 8 3 , 8 2 6}$	$\mathbf{- 1 , 2 0 1}$
$\mathbf{1 9 , 8 8 6 , 2 0 6}$	$\mathbf{1 9 , 4 0 7 , 2 3 8}$	$\mathbf{4 7 8 , 9 6 8}$

FISCAL \& TRANSFERS:
DEBT CHARGES:
8111 SHORT TERM BORROWINGS
8121 LONG TERM DEBT CHARGES
8131 DEBENTURE DEBT CHARGES
8191 OTHER DEBT CHARGES

TOTAL FISCAL SERVICES

OTHER TRANSFERS:
8211 ALLOWANCE FOR DOUBTFUL ACCOUNTS
8213 SNOW AND ICE RESERVE
8990 CONTRIBUTIONS TO CAPITAL FUND
9002 DEFICIT FUNDING
9300 HARBOUR CLEAN-UP RESERVE
0000 WATER TREATMENT RESERVE

TOTAL OTHER TRANSFERS

TOTAL EXPENDITURE:

$16,964,952$	$16,644,581$	320,371
$267,352,764$	$263,417,867$	$3,934,897$

TRANSFERS TO OTHER DEPARTMENTS:

PAYROLL COSTS:

1295 EMPLOYEE FRINGE BENEFITS

MECHANICAL:

3111 ADMINISTRATION - MECHANICAL DEPT.
3121 VEHICLE \& EQUIPMENT MAINTENANCE
3123 ROBIN HOOD BAY HEAVY EQUIPMENT
3129 VEHICLE FLEET RENTAL
TOTAL MECHANICAL
TOTAL EXPENDITURE:

$$
\begin{array}{lll}
\$ 6,073,675 & 6,886,996 & -813,321
\end{array}
$$

$\$ 1,355,115$	$1,398,207$	$-43,092$
$\$ 7,616,663$	$7,830,097$	$-213,434$
$\$ 628,928$	633,596	$-4,668$
$-\$ 10,740,465$	$-6,867,032$	$-3,873,433$
$-\mathbf{1 , 1 3 9 , 7 5 9}$	$\mathbf{2 , 9 9 4 , 8 6 8}$	$\mathbf{- 4 , 1 3 4 , 6 2 7}$
$\$ \mathbf{2 2 7 2 , 2 8 6 , 6 8 0}$	$\mathbf{\$ 2 7 3 , 2 9 9 , 7 3 1}$	$\mathbf{- \$ 1 , 0 1 3 , 0 5 1}$

Report/Recommendations
 Public Works Standing Committee
 August 21, 2014

In Attendance: Councillor Jonathan Galgay, Chairperson
Councillor Sandy Hickman
Councillor Bruce Tilley
Councillor Bernard Davis
Paul Mackey, Deputy City Manager of Public Works
Brendan O'Connell, Director of Engineering
Don Brennan, Director of Roads \& Traffic
Phil Hiscock, Manager of Roads
David Crowe, Operations Supervisor
Jonathan Murphy, Waste Management Engineer
Maureen Harvey, Senior Legislative Assistant

1. Memorandum dated August 7, 2014 from Deputy City Manager - Public Works re: re: Robin Hood Bay Waste Management - Residential Drop-off Rules

The Committee considered the above-noted memorandum and agreed as follows.

Abstract

Recommendation: Moved by Councillor Hickman; seconded by Councillor Davis: That approval be given to the following restriction at the Residential Drop Off site at Robin Hood Bay:

Waste loads must be completely covered and secure to prevent any contents from escaping while the load is being transported.

It was further agreed that the matter of ticketing people for uncovered loads be brought forward to Council once the ongoing review by the Legal Department is completed. This information will be communicated to the general public and signage will be posted at the facility.
2. Petition for Playground - Wigmore Court, Austin St, Thorburn Road and Cumberland Crescent - referred from Council on June 2, 2014

The Committee considered the above-noted petition and reviewed a memorandum dated August 19, 2014 from the Acting Manager of Parks \& Open Spaces.

Recommendation

The Committee recommends the petition be copied to NLHC with a letter of request for a meeting to discuss the possibility of having a playground reinstated on the property by NLHC.

3. Request for restricted Access to Virginia Park Playground and Ballfield - referred from Police \& Traffic on July 16th)

The Operations Supervisor informed the Committee that the work being carried out to restrict access to Virginia Park Playground and Ballfield is nearing completion.
4. Memorandum dated June 27, 2014 from the Director of Roads and Traffic re: Street Excavation Permits and Fees.

The Committee reviewed the above-noted memorandum which was written in response to inquiries regarding the cost of street excavation permits.

Recommendation:

Moved by Councillor Hickman: That the current fee schedule for street excavation, which is in line with those charged by adjacent municipalities, be maintained.

5. Process for notification of residents for street cleaning. (see email from Councillor Galgay)

Chairperson Galgay reported a number of calls from constituents who have been ticketed, allegedly because they weren't aware of the street cleaning schedule in their area. It was noted that the practice of issuing "hard copy" notifications had ceased last year on the recommendation of the Division of Strategy and Engagement. It was noted that Roads and Traffic Division is undertaking a full review of the street cleaning program which will be presented to the Committee at a later date. It was also suggested that staff consult with Parking Enforcement about alleged inappropriate ticketing.

Recommendation

Moved by Councillor Hickman: That the practice of paper notification to residents whose streets are to be cleaned be reinstated.

6. Proposed New Equipment for Asphalt Repair Program

The Committee considered a memorandum dated August 22, 2014 from the Manager of Roads which identified the need for an additional front end loader for the asphalt repair program.

It was noted that many years ago the City instituted a cost recovery program that allowed for the collection of $\$ 200.00$ per Street Excavation permit to help offset the costs associated with asphalt repairs to mostly lateral street excavations. This fund was intended to cover the cost of repairing asphalt settlement after the expiration of the warranty period. At the end of 2013 there weren't sufficient funds to really be effective or make significant difference to any potential operations. However, the fund now amounts to $\$ 271,386.72$ and will facilitate the purchase of equipment.
Public Works Standing Committee Report

Recommendation:

Moved by Councillor Hickman; That using funds from the City's asphalt reinstatement fund, a tender be called for the purchase of an additional front end loader (estimated cost $\$ 250,000$) that will be used to augment the City's fleet for street resurfacing and snowclearing programs.

Councillor Jonathan Galgay
Chairperson

MEMORANDUM

Date: 2014-08-25
To: \quad His Worship the Mayor and Members of Council
From: Tanya Haywood, Director, Recreation Division
Department of Community Services
Re: \quad Special Events Advisory Committee Recommendation

The following recommendation of the Committee is forwarded to Council for approval in principle subject to any conditions that may be required by the Special Events Advisory Committee:

1) Event: Take Back the Night March

Location: Bannerman Park to City Hall
Date: \quad September 19, 2014
Time: 7:00 p.m. to 8:30 p.m.

Special Events Advisory Committee Recommendation:

It is the recommendation of the Committee that Council approve the above noted event, subject to the conditions set out by the Special Events Advisory Committee.

Tanya Haywood
Director, Recreation Division
Department of Community Services

DEVELOPMENT PERMITS LIST
DEPARTMENT OF PLANNING, DEVELOPMENT AND ENGINEERING FOR THE PERIOD OF August 21, 2014 TO August 27, 2014

Code	Applicant	Application	Location	Ward	Development Officer's Decision	Date
COM	Local 855 Teamsters Union)	Office Building	70 Mews Place	4	Approved	$14-08-21$
RES	Your Computer Connection Inc.	Home Office	6 Moss Heather Drive	4	Approved	$14-08-25$
RES		Home Office for Electrical Contractor	100 Carter's Hill	2	Approved	$14-08-25$
OT	 Gravel	Quarry Permit	Paradise		Approved	$14-08-26$
RES	Sheppard Case Architect	25 unit Seniors Apartment	24 Road de Luxe	3	Approved	$14-08-26$

*	Code Classification: RES - Residential COM - Commercial AG - Agriculture OT -Other	$\begin{aligned} & \text { INST } \\ & \text { IND } \end{aligned}$	- Institutional - Industrial
**	This list is issued for infor writing of the Developme to the St. John's Local Bo	purpos . Appeal.	ony. Applicants and of their rig

Gerard Doran Development Officer Department of Planning

Building Permits List Council's September 02, 2014 Regular Meeting

Class: Commercial

5 Springdale St
385 Empire Ave
193 Kenmount Rd
595 Kenmount Rd
$431-435$ Main Rd
57 Old Pennywell Rd
22 O'leary Ave
502 Topsail Rd
660 Torbay Rd
141 Torbay Rd
141 Torbay Rd
Torbay Road-Torbay Rd Mall
351 Water St, Flight Centre
16 Queen St
428 Empire Ave
10 Factory Lane
48 Allandale Rd
69 Mews Pl
48 Kenmount Rd/Nl Chocolate Co
343 Water St
$365-367$ Water St
100 Military Rd
70 Mews Pl
Office
Office
Retail Store
Commercial Garage
Take-Out Food Service
Retail Store
Restaurant
Service Shop
Retail Store
Restaurant
Office
Restaurant
Office
Tavern
Retail Store
Office
Office
Office
Retail Store
Retail Store
Mixed Use
Recreational Use
Office

This Week \$ 4,160,850.00

Class: Industrial

This Week \$
.00

Class: Government/Institutional

Class: Residential
50 Beaver Brook Dr
20 Blackwood Pl
108 Bonaventure Ave
16 Burdell Pl
16 Burdell Pl
134 Cheeseman Dr
41 Cherrington St
10 Cherrybark Cres
16 Cherrybark Cres , Lot 215
5 Devine Pl
35 Devine Pl
28 - 30 Donovan's Rd
$28-30$ Donovan's Rd
101 Doyle's Rd
9 Dundas St

9 Dundas St

NC	Swimming Pool
NC	Patio Deck
NC	Fence
NC	Patio Deck
NC	Accessory Building
NC	Swimming Pool
NC	Accessory Building
NC	Swimming Pool
NC	Single Detached Dwelling
NC	Patio Deck
NC	Fence
NC	Accessory Building
NC	Swimming Pool
NC	Single Detached Dwelling
NC	Fence

Fence
Accessory Building
Single Detached Dwelling
Condominium
Accessory Building
Accessory Building
Patio Deck
Fence
Accessory Building
Single Detached \& Sub.Apt
Accessory Building
Single Detached Dwelling
Patio Deck
Single Detached Dwelling
Fence
Single Detached Dwelling
Accessory Building
Single Detached Dwelling
Accessory Building
Accessory Building
Single Detached Dwelling Office
Single Detached Dwelling
Semi-Detached Dwelling
Semi-Detached Dwelling
Single Detached Dwelling
Single Detached Dwelling
Townhousing
Single Detached Dwelling
Townhousing
Townhousing
Single Detached Dwelling
Semi-Detached Dwelling
Semi-Detached Dwelling
Single Detached Dwelling
Single Detached Dwelling
Single Detached Dwelling
Subsidiary Apartment
Single Detached Dwelling
Single Detached Dwelling
Single Detached Dwelling
Single Detached \& Sub.Apt
Single Detached Dwelling
Bank

Class: Demolition

```
6 2 ~ C u c k h o l d ' s ~ C o v e ~ R d
Dm Single Detached Dwelling
6 2 5 \text { Southside Rd}
Dm Single Detached Dwelling
1 Tessier's Lane
Dm Single Detached & Sub.Apt
This Week $ 29,000.00
```

This Week's Total: \$ 10,333,697.00

Legend

Co Change Of Occupancy	Sn	Sign
Cr Chng Of Occ/Renovtns	Sw	Site Work
Nc New Construction	Ex	Extension
Rn Renovations	Dm	Demolition
Ms Mobile Sign		

YEAR TO DATE COMPARISONS			
September 2, 2014			
TYPE	2013	2014	\% VARIANCE (+/-)
Commercial	\$68,471,000.00	\$101,104,000.00	48
Industrial	\$131,000.00	\$125,300.00	-4
Government/Institutional	\$71,281,000.00	\$77,742,000.00	9
Residential	\$112,219,000.00	\$106,778,000.00	-5
Repairs	\$3,485,000.00	\$3,504,000.00	1
Housing Units (1 \& 2 Family Dwellings)	313	228	
TOTAL	\$255,587,000.00	\$289,253,300.00	13

Respectfully Submitted,

```
Jason Sinyard, P. Eng., MBA
Director of Planning & Development
```


MEMORANDUM

Weekly Payment Vouchers
 For The
 Week Ending August 27, 2014

Payroll

ROGERS BUSINESS SOLUTIONS
ENTERPRISE RENT-A-CAR
NEWFOUNDLAND POWER
NADINE MARTIN
INFINITY CONSTRUCTION
KRYSTAL KELSEY
ROYAL BANK VISA
hURLEY, ANNETTE
POWER, BRENDA
CRAIG MARSHALL
ECONOLITE CANADA INC.,
NEWFOUNDLAND POWER
RECEIVER GENERAL FOR CANADA
RECEIVER GENERAL FOR CANADA
FRANK \& G. DELACEY
PIK-FAST EXPRESS INC.
SIMPLEX GRINNELL
DICKS \& COMPANY LIMITED
THYSSENKRUPP ELEVATOR
THE TELEGRAM
JOHNSON INVESTMENTS INC.
RCAP
GENTARA REAL ESTATE LP
IPS INFORMATION PROTECTION SERVICES LTD.
MICROSOFT CANADA
NEWFOUND DISPOSAL SYSTEMS LTD.
PUBLIC SERVICE CREDIT UNION
COOK, CAROLYN
POWER, BRENDA
CANCELLED
CANCELLED
CANCELLED

71923 DATA \& USAGE CHARGES	$\$ 10,002.32$
71924 VEHICLE RENTAL	$\$ 1,553.15$
71925 ELECTRICAL SERVICES	$\$ 1,699.96$
71926 SUPPLIES FOR ACTIVE CAMPS	$\$ 116.83$
71927 PROGRESS PAYMENT	$\$ 22,275.93$
71928 REIMBURSEMENT TUITION	$\$ 821.80$
71929 VISA PAYMENT	$\$ 2,214.67$
71930 TRAVEL ADVANCE	$\$ 394.38$
71931 REIMBURSEMENT SUPPLIES	$\$ 377.75$
71932 CLOTHING ALLOWANCE	$\$ 33.89$
71933 PROFESSIONAL SERVICES	$\$ 1,356.00$
71934 ELECTRICAL SERVICES	$\$ 17,857.96$
71935 PAYROLL DEDUCTIONS	$\$ 130,471.88$
71936 PAYROLL DEDUCTIONS	$\$ 34,661.62$
71937 REFUND OVERPAYMENT OF TAXES	$\$ 1,252.39$
71938 BOTTLED WATER	$\$ 43.50$
71939 PROFESSIONAL SERVICES	$\$ 290.41$
71940 OFFICE SUPPLIES	$\$ 105.46$
71941 ELEVATOR MAINTENANCE	$\$ 282.50$
71942 ADVERTISING	$\$ 125.43$
71943 PROFESSIONAL SERVICES	$\$ 1,125.00$
71944 LEASE OF OFFICE SPACE	$\$ 192.71$
71945 LEASE OF OFFICE SPACE	$\$ 27,129.44$
71946 PAPER SHREDDED ON SITE	$\$ 402.73$
71947 SOFTWARE RENEWAL	$\$ 5,592.69$
71948 DISPOSAL SERVICES	$\$ 1,268.21$
$71949 ~ P A Y R O L L ~ D E D U C T I O N S ~$	$\$ 5,648.86$
$71950 ~ R E I M B U R S E M E N T ~ W R I T E R S ~ S U P P E R ~ \& ~ P A R K I I ~$	$\$ 186.28$
71951 REIMBURSEMENT FOR SUPPLIES	$\$ 377.75$
71952 PRINTER PROBLEM	$\$ 0.00$
71953 PRINTER PROBLEM	$\$ 0.00$
71954 PRINTER PROBLEM	$\$ 0.00$
7	

ROBERT BAIRD EQUIPMENT LTD.
NEWFOUNDLAND POWER
ROBERT BAIRD EQUIPMENT LTD.
CLARKE'S TRUCKING \& EXCAVATING
WAL-MART 3093-MERCHANT DRIVE
GORDON BARNES
CRAWFORD \& COMPANY CANADA INC
PYRAMID CONSTRUCTION LIMITED
THOMAS, MIREILLE
KRYSTAL WELLS
WINDSOR, JOSEPH
ACKLANDS-GRAINGER
AFONSO GROUP LIMITED
ASHFORD SALES LTD.
ATLANTIC PURIFICATION SYSTEM LTD
AUTOMOTIVE SUPPLIES 1985 LTD.
AVALON ANIMAL HOSPITAL LTD.
B \& B SALES LTD.
COSTCO WHOLESALE
KELLOWAY CONSTRUCTION LIMITED RDM INDUSTRIAL LTD.
ROBERT BAIRD EQUIPMENT LTD.
DISCOUNT CAR \& TRUCK RENTALS
QUEEN'S PRINTER
NEWFOUNDLAND EXCHEQUER ACCOUNT
BATTLEFIELD EQUIP. RENTAL CORP
GRAND CONCOURSE AUTHORITY
SMS EQUIPMENT
CABOT PEST CONTROL
CUSTOM SYSTEMS ELECTRONICS LTD
PLAZA BOWL LIMITED
ROCKWATER PROFESSIONAL PRODUCT
BLACK \& MCDONALD LIMITED
BLAZER CONCRETE SAWING \& DRILL

EC BOONE LTD.
MARITIME GREEN PRODUCTS
CLASS C SOLUTIONS GROUP
BRENKIR INDUSTRIAL SUPPLIES
BROWNE'S AUTO SUPPLIES LTD.
RED OAK CATERING
ATLANTIC METAL COATINGS LTD
OFFICEMAX GRAND \& TOY
SPECTRUM INVESTIGATION \& SECURITY 1998 LTD.
BDI CANADA INC
OUTFITTERS
ATLANTIC TRAILER \& EQUIPMENT SIGNS 1ST
TRIWARE TECHNOLOGIES INC.
NEW WORLD FITNESS
CHESTER DAWE CANADA - O'LEARY AVE
CAMPBELL RENT ALLS LTD.
AIR LIQUIDE CANADA INC.
WAL-MART 3196-ABERDEEN AVE.
SOBEY'S INC
NORTRAX CANADA INC.,
NEWFOUNDLAND GLASS \& SERVICE
ROLEY CONSTRUCTION LTD.
MAC TOOLS
GENEQ INC.
NORTH ATLANTIC SUPPLIES INC.
CLARKE'S TRUCKING \& EXCAVATING
WAL-MART 3093-MERCHANT DRIVE
BRAEMAR PEST CONTROL SERVICES
RON FOUGERE ASSOCIATES LTD
STEELE COMMUNICATIONS
COLONIAL GARAGE \& DIST. LTD.
SAFWAY SERVICES CANADA INC.
CONSTRUCTION SIGNS LTD.

71989 PROTECTIVE CLOTHING	\$1,973.05
71990 REPAIR PARTS	\$669.05
71991 REPAIR PARTS	\$4,048.15
71992 PROTECTIVE CLOTHING	\$1,310.52
71993 AUTOMOTIVE REPAIR PARTS	\$689.92
71994 CATERING SERVICES	\$4,630.77
71995 SANDBLASTING SERVICES	\$1,412.50
71996 OFFICE SUPPLIES	\$18.08
71997 SECURITY SERVICES	\$1,892.75
71998 REPAIR PARTS	\$908.52
71999 SUPPLIES RECREATION	\$112.94
72000 REPAIR PARTS	\$407.33
72001 SIGNAGE	\$121.00
72002 COMPUTER EQUIPMENT	\$339.00
72003 MEMBERSHIP DUES FOR FIREFIGHTERS	\$243.94
72004 BUILDING SUPPLIES	\$356.00
72005 HARDWARE SUPPLIES	\$822.64
72006 CHEMICALS AND WELDING PRODUCTS	\$43,575.15
72007 MISCELLANEOUS SUPPLIES	\$1,243.56
72008 PET SUPPLIES	\$220.01
72009 REPAIR PARTS	\$1,380.94
72010 GLASS INSTALLATION	\$3,331.83
72011 RENTAL OF EQUIPMENT	\$406.80
72012 TOOLS	\$1,117.46
72013 REPAIR PARTS	\$1,614.96
72014 REPAIR PARTS	\$706.25
72015 GRAVEL	\$3,024.00
72016 MISCELLANEOUS SUPPLIES	\$21.33
72017 PEST CONTROL	\$221.48
72018 ARCHITECTURAL SERVICES	\$89,974.05
72019 ADVERTISING	\$1,130.23
72020 AUTO PARTS	\$15,525.02
72021 REPAIR PARTS	\$500.78
72022 SIGNAGE	\$16,413.86

CONTROLS \& EQUIPMENT LTD. SCOTT WINSOR ENTERPRISES INC., MAXXAM ANALYTICS INC., JAMES G CRAWFORD LTD. CROSBIE INDUSTRIAL SERVICE LTD NEWFOUND CABS THOMAS ECONOMY GLASS CUMMINS EASTERN CANADA LP KENDALL ENGINEERING LIMITED GJ CAHILL \& COMPANY LIMITED DAY TIMERS OF CANADA LTD. CRAWFORD \& COMPANY CANADA INC DICKS \& COMPANY LIMITED WAJAX POWER SYSTEMS
DOMINION STORES \#922
REEFER REPAIR SERVICES LTD.
DOMINION RECYCLING LTD.
G \& M PROJECT MANAGEMENT RUSSEL METALS INC.
CANADIAN TIRE CORP.-ELIZABETH AVE.
CANADIAN TIRE CORP.-MERCHANT DR.
EASTERN TURF PRODUCTS
ENTERPRISE RENT A CAR
EM PLASTIC \& ELECTRIC PROD LTD
STOKES INTERNATIONAL
HOME DEPOT OF CANADA INC.
DOMINION STORE 935
BASIL FEARN 93 LTD.
EMERGENCY REPAIR LIMITED
FRESHWATER AUTO CENTRE LTD.
TIM HORTONS STORE - MOUNT PEARL
ABSTRACT \& AUXILIARY SERVICES
PRINCESS AUTO
MILLENNIUM EXPRESS

72023 REPAIR PARTS	\$117.16
72024 REMOVAL OF GARBAGE \& DEBRIS	\$28,845.46
72025 WATER PURIFICATION SUPPLIES	\$4,880.76
72026 PLUMBING SUPPLIES	\$821.69
72027 PROFESSIONAL SERVICES	\$7,499.81
72028 TRANSPORTATION SERVICES	\$1,939.91
72029 PROFESSIONAL SERVICES	\$45.20
72030 REPAIR PARTS	\$41.61
72031 PROFESSIONAL SERVICES	\$5,428.74
72032 REFUND ELECTRICAL PERMIT	\$556.60
72033 OFFICE SUPPLIES	\$56.47
72034 ADJUSTING FEES	\$1,144.00
72035 OFFICE SUPPLIES	\$4,893.82
72036 REPAIR PARTS	\$60.69
72037 MISCELLANEOUS SUPPLIES	\$164.79
72038 REPAIR PARTS	\$60.78
72039 PIPE	\$242.95
72040 PROFESSIONAL SERVICES	\$53,098.70
72041 METALS	\$146.90
72042 MISCELLANEOUS SUPPLIES	\$248.18
72043 MISCELLANEOUS SUPPLIES	\$109.56
72044 REPAIR PARTS	\$2,722.40
72045 RENTAL OF VEHICLES	\$4,322.25
72046 REPAIR PARTS	\$265.55
72047 CITATION CORDS	\$305.10
72048 BUILDING SUPPLIES	\$4,307.59
72049 MISCELLANEOUS SUPPLIES	\$578.70
72050 REPAIR PARTS	\$812.19
72051 AUTO PARTS AND LABOUR	\$33,095.94
72052 AUTO PARTS/MAINTENANCE	\$3,953.22
72053 REFRESHMENTS	\$68.98
72054 TITLE SEARCH	\$484.00
72055 MISCELLANEOUS ITEMS	\$1,335.13
72056 COURIER SERVICES	\$135.60

DALHOUSIE UNIVERSITY
CITY WIDE TAXI
COASTLINE SPECIALTIES
STELLAR INDUSTRIAL SALES LTD.
ENTERPRISE RENT-A-CAR
NEWALTA CORPORATION
PILOT COMMUNICATIONS
PROVINCIAL FENCE PRODUCTS
PENNEY'S HOLDINGS LIMITED
WOLSELEY CANADA WATERWORKS
TROY FIRE \& LIFE SAFETY LTD.
THE WORKS
EASTERN PROPANE
harvey's oil ltd.
GUILLEVIN INTERNATIONAL CO.
BRENNTAG CANADA INC
GRAYMONT (NB) INC.,
BELL DISTRIBUTION INC., HISCOCK RENTALS \& SALES INC.
TOTAL LUBRICANTS CANADA INC.,
NL NEWS NOW INC.
PENNECON ENERGY TECHNICAL SERVICE
SCOTIA RECYCLING (NL) LIMITED
IMPRINT SPECIALTY PROMOTIONS LTD
HICKMAN DODGE JEEP CHRYSLER
ISLAND HOSE \& FITTINGS LTD
PRINTER TECH SOLUTIONS INC.,
CDMV
ATARA EQUIPMENT LTD
KANSTOR INC.
BOSCH REXROTH CANADA CORP.
LITECO
DILLON CONSULTING LTD.
BACCALIEU TRAIL ANIMAL HOSPITAL

72057 TUITION FEES	$\$ 7,160.00$
72058 TRANSPORTATION SERVICES	$\$ 26.00$
72059 PROFESSIONAL SERVICES	$\$ 3,005.80$
72060 INDUSTRIAL SUPPLIES	$\$ 1,189.55$
72061 RENTAL OF VEHICLES	$\$ 4,462.37$
72062 PROFESSIONAL SERVICES	$\$ 31,146.02$
72063 PROFESSIONAL SERVICES	$\$ 1,243.00$
72064 FENCING MATERIALS	$\$ 3,240.84$
72065 PROFESSIONAL SERVICES	$\$ 2,627.25$
72066 REPAIR PARTS	$\$ 981.00$
72067 PROFESSIONAL SERVICES	$\$ 714.16$
72068 MEMBERSHIP FEES	$\$ 166.65$
72069 PROPANE	$\$ 95.98$
72070 PETROLEUM PRODUCTS	$\$ 35,321.73$
72071 ELECTRICAL SUPPLIES	$\$ 301.17$
72072 CHLORINE	$\$ 32,145.48$
72073 HYDRATED LIME	$\$ 20,725.47$
72074 CELL PHONES \& ACCESSORIES	$\$ 259.60$
72075 HARDWARE SUPPLIES	$\$ 219.10$
72076 LUBRICANTS	$\$ 425.25$
72077 ADVERTISING	$\$ 259.12$
72078 PROFESSIONAL SERVICES	$\$ 204.02$
72079 REPAIR PARTS	$\$ 140,651.70$
72080 PROMOTIONAL ITEMS	$\$ 95.97$
72081 AUTO PARTS	$\$ 292.28$
72082 INDUSTRIAL SUPPLIES	$\$ 168.39$
72083 REPAIRS TO EQUIPMENT	$\$ 1,352.55$
72084 VETERINARY SUPPLIES	$\$ 1,308.75$
72085 AUTO PARTS	$\$ 2,247.57$
72086 REPAIR PARTS	$\$ 121.41$
72087 ADAPTER	$\$ 54.92$
72088	REPAIR PARTS
$72089 ~ C O N S U L T I N G ~ S E R V I C E S ~$	$\$ 26,756.99$
72090 PROFESSIONAL SERVICES	$\$ 3,236.32$

MODERN HEAVY CIVIL LIMITED
MITCHELL'S FARMS INC.,
TRACE PLANNING \& DESIGN RENEE PHAIR HEALEY, REGISTERED PSYCH.
KWIK COPY PRINTING
ROCKET BAKERY \& FRESH FOODS
ACE INDUSTRIAL SUPPLIES LTD.
THE CLEANING COMPANY
BUDGET CONTRACTING
MARK'S WORK WEARHOUSE
JT MARTIN \& SONS LTD.
MARTIN'S FIRE SAFETY LTD.
MCLOUGHLAN SUPPLIES LTD.
MIKAN INC.
MODERN BUSINESS EQUIPMENT LTD.
NU-WAY EQUIPMENT RENTALS
NEWFOUNDLAND DISTRIBUTORS LTD.
NEWFOUNDLAND DESIGN ASSOCIATES
TRC HYDRAULICS INC.
RECREATION NL
BELL ALIANT
TOROMONT CAT
PENNECON ENERGY HYDRAULIC SYSTEMS
PBA INDUSTRIAL SUPPLIES LTD.
GCR TIRE CENTRE
PERIDOT SALES LTD.
POWERLITE ELECTRIC LTD.
K \& D PRATT LTD.
PROFESSIONAL UNIFORMS \& MATS INC.
RIDEOUT TOOL \& MACHINE INC.
NAPA ST. JOHN'S 371
TRANSCONTINENTAL NEWFOUNDLAND \& LABRADOR DI
ROYAL FREIGHTLINER LTD
LIFESAVING SOCIETY NFLD \& LAB.

72091 PROFESSIONAL SERVICES	\$68,970.34
72092 SCOOPS MULCH	\$339.00
72093 PROFESSIONAL SERVICES	\$5,545.42
72094 COUNSELLING SERVICES	\$216.00
72095 PRINTING SERVICES	\$107.45
72096 REFRESHMENTS	\$294.36
72097 CLEANING SUPPLIES	\$337.18
72098 PROFESSIONAL SERVICES	\$460.00
72099 REFUND SECURITY DEPOSIT	\$2,000.00
72100 PROTECTIVE CLOTHING	\$395.47
72101 HARDWARE SUPPLIES	\$311.54
72102 SAFETY SUPPLIES	\$99.44
72103 ELECTRICAL SUPPLIES	\$7,228.94
72104 LABORATORY SUPPLIES	\$905.41
72105 LEASING OF EQUIPMENT	\$53.97
72106 RENTAL OF EQUIPMENT	\$7,061.37
72107 INDUSTRIAL SUPPLIES	\$471.70
72108 PROFESSIONAL SERVICES	\$19,736.52
72109 REPAIR PARTS	\$339.00
72110 SUPPLIES RECREATION	\$1,500.00
72111 TELEPHONE SERVICES	\$200.43
72112 AUTO PARTS	\$1,331.57
72113 PROFESSIONAL SERVICES	\$1,243.75
72114 INDUSTRIAL SUPPLIES	\$103.34
72115 TIRES	\$12,128.52
72116 REPAIR PARTS	\$502.03
72117 ELECTRICAL PARTS	\$32.65
72118 REPAIR PARTS AND CHEMICALS	\$1,678.05
72119 PROTECTIVE CLOTHING	\$315.23
72120 TOOLS	\$598.90
72121 AUTO PARTS	\$344.46
72122 BROCHURES	\$10,013.13
72123 REPAIR PARTS	\$108.41
72124 AQUATIC RECERTIFICATION	\$200.00

S \& S SUPPLY LTD. CROSSTOWN RENTALS
ST. JOHN'S PORT AUTHORITY
ST. JOHN'S VETERINARY HOSPITAL
ST. JOHN'S TRANSPORTATION COMMISSION
BIG ERICS INC
SANSOM EQUIPMENT LTD.
STRONGCO
SMITH STOCKLEY LTD.
SUPERIOR OFFICE INTERIORS LTD.
TEMPLETON TRADING INC.
TERRA NOVA MOTORS LTD.
TORBAY ROAD ANIMAL HOSPITAL
TOWER TECH COMMUNICATIONS \& SPORTS FIELD LIGH7 TUCKER ELECTRONICS LTD.
TULKS GLASS \& KEY SHOP LTD.
UNITED SAIL WORKS LTD.
URBAN CONTRACTING JJ WALSH LTD
WATERWORKS SUPPLIES DIV OF EMCO LTD
WEIRS CONSTRUCTION LTD.
WESCO DISTRIBUTION CANADA INC.
SIEMENS CANADA LIMITED
WINDCO ENTERPRISES LTD.
WAL-MART 3092-KELSEY DRIVE
XEROX CANADA LTEE
STERLING MARKING PRODUCTS INC.
SHALLAWAY
PERHAM HOMES
DR. KARL MISIK
PLAZA BOWL - YBC
SANI SMART WASTE DISPOSAL SERVICES INC.
GEORGE STREET ASSOCIATION
BELL MOBILITY INC. RADIO DIVISION
SAFETY SERVICES NEWFOUNDLAND \& LABRAOR
SUBWAY SANDWICHE \& SALADS

72125 REPAIR PARTS	\$7,064.08
72126 RENTAL OF QUARRY SITE	\$5,205.35
72127 PROFESSIONAL SERVICES	\$1,193.60
72128 CHARTER SERVICES	\$339.00
72129 SANITARY SUPPLIES	\$824.01
72130 REPAIR PARTS	\$334.32
72131 REPAIR PARTS	\$415.22
72132 PLUMBING SUPPLIES	\$60.66
72133 OFFICE SUPPLIES	\$4,596.84
72134 PAINT SUPPLIES	\$123.57
72135 PROFESSIONAL SERVICES	\$591.63
72136 PROFESSIONAL SERVICES	\$209.05
72137 NETTING REPAIRS \& INSTALLATION	\$28,131.35
72138 ELECTRONICS	\$503.13
72139 PROFESSIONAL SERVICES	\$90.29
72140 VINYL COVER	\$3,870.25
72141 PROPERTY REPAIRS	\$847.50
72142 REPAIR PARTS	\$6,430.65
72143 REFUND SECURITY DEPOSIT	\$5,217.04
72144 REPAIR PARTS	\$85.88
72145 MOTOR/REPAIRS	\$38,215.28
72146 PROFESSIONAL SERVICES	\$5,397.78
72147 MISCELLANEOUS SUPPLIES	\$679.32
72148 LEASING OF OFFICE EQUIPMENT	\$1,106.47
72149 DOG \& CAT TAGS	\$512.63
72150 REAL PROGRAM	\$1,866.72
72151 REFUND SECURITY DEPOSIT	\$884.75
72152 MEDICAL EXAMINATION	\$20.00
72153 REAL PROGRAM	\$440.65
72154 DISPOSAL SERVICES	\$293.38
72155 REFUND KEY DEPOSIT	\$50.00
72156 MAINTENANCE CHARGES \& REPAIRS	\$96.05
72157 WORKSHOP FEES	\$760.00
72158 MEAL ALLOWANCES	\$46.90

72126 RENTAL OF QUARRY SITE \$5,205.35
72127 PROFESSIONAL SERVICES \$1,193.60
72128 CHARTER SERVICES \$339.00
72129 SANITARY SUPPLIES \$824.01
72130 REPAIR PARTS \$334.32
72131 REPAIR PARTS \$415.22
PLUMBING SUPPLIES

72134 PAINT SUPPLIES $\$ 123.57$

72135 PROFESSIONAL SERVICES
72136 PROFESSIONAL SERVICES \$209.05
72137 NETTING REPAIRS \& INSTALLATION \$28,131.35
\$503.13
\$90.29
,870.25
$\$ 847.50$
\$5,217.04
$\$ 85.88$
\$38,215.28
5,397.78
\$1,106.47
\$512.63
\$1,866.72
\$884.75

KETTLE, CYNTHIA
WHEELER, JUNE
METROPOLITAN UNITED
ENCON CONSTRUCTION
STAR OF THE SEA ASSOCIATION
CARLA EVANS
WEB WORKS INC.
SMITH, JEAN
PIZZA DELIGHT
HEALEY,CHARLEEN
MAURICE FITZGERALD
BRADLEY \& STEPHANIE COADY
MILTON \& IRENE FOWLER
DAVID COCHRANE \& AMY WYSE
GERARD EVANS SR.
JOAN WILLIAMS
LAWRENCE \& MARGARET CONNOLLY
BAYMOUNT HOMES LTD.
CLARENCE \& MONICA WISEMAN
DAVID \& KIM BUTT
OXFAM CANADA
SHARON SHERRIFFS
CATHERINE SWEETAPPLE
ANNE MACK
PAMELA POWER
FRANCIS BARNES
MARIE ANNE BOULAIN
JULIE LEWIS
CARLY FORD
RENJI CHERIAN
KIRKLAND, CAROL
MORRIS, MIKE
LANGMEAD, JENNIFER
NEWMAN, CHELSEA

72159	RECREATION PROGRAM REFUND
72160 RECREATION PROGRAM REFUND	$\$ 195.00$
72161 REAL PROGRAM	$\$ 51.00$
72162 REFUND SECURITY DEPOSIT	$\$ 100.00$
72163 SENIORS OUTREACH PROGRAM	$\$ 2000.00$
72164 RECREATION PROGRAM REFUND	$\$ 888.00$
72165 COMPUTER UPGRADES	$\$ 50.00$
72166 RECREATION PROGRAM REFUND	$\$ 32.83$
72167 REFRESHMENTS	$\$ 335.57$
72168 RECREATION PROGRAM REFUND	$\$ 50.00$
72169 RECREATION PROGRAM REFUND	$\$ 85.00$
72170 REFUND OVERPAYMENT OF TAXES	$\$ 50.00$
72171 REFUND OVERPAYMENT OF TAXES	$\$ 2,224.54$
72172 REFUND OVERPAYMENT OF TAXES	$\$ 234.85$
72173 REFUND OVERPAYMENT OF TAXES	$\$ 1,067.25$
72174 REFUND OVERPAYMENT OF TAXES	$\$ 122.53$
72175 REFUND OVERPAYMENT OF TAXES	$\$ 153.58$
72176 REFUND OVERPAYMENT OF TAXES	$\$ 1,454.55$
72177 REFUND OVERPAYMENT OF TAXES	$\$ 1,252.77$
72178 REFUND OVERPAYMENT OF TAXES	$\$ 758.52$
72179	RECREATION PROGRAM REFUND
72180	RECREATION PROGRAM REFUND
72181	RECREATION PROGRAM REFUND
72182	RECREATION PROGRAM REFUND
72183	RECREATION PROGRAM REFUND
72184	RECREATION PROGRAM REFUND

72160 RECREATION PROGRAM REFUND \$51.00
72161 REAL PROGRAM \$100.00
72162 REFUND SECURITY DEPOSIT \$2,000.00
72163 SENIORS OUTREACH PROGRAM \$888.00
72164 RECREATION PROGRAM REFUND \$50.00
\$341.83
72166 RECREANON PROGRAM REAUD \$32.00
72168 RECREATION PROGRAM REFUND \$50.00
72169 RECREATION PROGRAM REFUND \$85.00
72170 REFUND OVERPAYMENT OF TAXES \$50.00

72173 REFUND OVERPAYMENT OF TAXES \$1,067.25
72174 REFUND OVERPAYMENT OF TAXES \$122.53
12175 REFUND OVERPAYMENT OF TAXES
72177 REFUD OVERPAYM OAXES
72178 REFUND OVERPAYMENT OF TAXES \$758.52
72179 RECREATION PROGRAM REFUND \$40.67
\$70.00
$\$ 90.00$
\$75.00
\$19.00

72188 RECREATION PROGRAM REFUND \$50.00
72189 VEHICLE BUSINESS INSURANCE \$303.00
$\$ 85.00$

72192 CLOTHING ALLOWANCE \$75.00

JESSICA PECKHAM
FURLONG, LOYOLA
GUSHUE, RICK
ORR, JULIE
CHARITY LAWRENCE
SARAH ROWE
GAIL TUCKER
SUSAN BONNELL
LISA BENNETT
HARRIS \& ROOME SUPPLY LIMITED
MCCARTHY'S ROOFING LIMITED

72193 CLOTHING ALLOWANCE
$\$ 75.00$
72194 CLOTHING ALLOWANCE $\$ 80.00$
72195 MILEAGE $\$ 6.81$
72196 REIMBURSEMENT TAXI \$34.25
72197 REIMBURSEMENT TUITION \$770.00
72198 CLOTHING ALLOWANCE \$70.63
72199 RECREATION PROGRAM REFUND \$220.00
72200 REIMBURSEMENT SUBSCRIPTION FOR SOFTM \$175.16
72201 VEHICLE BUSINESS INSURANCE $\$ 325.00$
72202 ELECTRICAL SUPPLIES \$1,871.50
72203 PROGRESS PAYMENT \$314,010.95
Total: \$4,218,880.77

MEMORANDUM

Date: Aug 25th, 2014
To:
Mr. Kevin Breen, Mr. Rick Squires, Ms. Elaine Henley

Sherri Higgins- Buyer

Re:
Council Approval - Tender 2014067 Shop Supplies

The results of Tender 2014067 Shop Supplies are stated below:

Shop Supplies	
TENDER \#2014067 - Aug 11, 2014-1:00 PM	
Colonial Garage \&	
Distributors Ltd.	$\$ 24,844.01$
Source Atlantic Limited	$\$ 23,599.87$
 Industrial Ltd.	$\$ 14,128.35$
BDI Canada Inc.	$\$ 1,786.04$
Speedy Automotive Ltd.	$\$ 21.56$

It is recommended to award this tender to the lowest bidders per section meeting the specifications for various shop supplies, as per the Public Tendering Act.

This contract is for a one year period with the option to extend for two additional one year periods.

Taxes (HST) extra to price quoted

Sherri Higgins
Buyer

MEMORANDUM

Date: Aug 25th, 2014
To: Mr. Kevin Breen, Mr. Rick Squires, Ms. Elaine Henley

From: Sherri Higgins - Buyer

Re: Council Approval - Tender 2014072 Curb Runners

The results of Tender 2014072 for Curb Runners is as follows:

S\&S Supply Crosstown Rentals Ltd.
Western Hydraulic
\$ 19, 085.00
\$ 27, 580.00

It is recommended to award this tender to S\&S Supply Cross Town Rentals Ltd. The lowest bidder who fully meets specification, as per the Public Tendering Act. Please note price(s) indicated are for a one year term and this contract has the possibility to be extended for two additional one year terms.

Taxes (HST) included with price quoted

Sherri Higgins
Buyer

[^0]: Abbreviations: ANCOYA, anolysis of covariance; BCCH , broadcast channel; CI, confidence interval; GSM, global system for mobile telecommunication; HF-EMF, high-Frequency electromagnetic fields; $M H z$, megahork; $\mathcal{F O R}$, prevalence odds ratio; $S A R$, spacific (energy) absorption rate; SD, standard deviation; TDMA, fime division multiple access; WHO, World Healih Organisation

[^1]: REFERENCES
 1 Santini R, Santini R, Le Ruy P, of al. Survey study of people living in the vicinity of cellular phone base stations. Electumagnetic Biology and Medicine 2003;22:41-7.

[^2]:
 E-mail address: gaofar17@yahoo.com (G. Abdel-Rassoul).

[^3]: Cell phone tower studles which examined the relationship between rediation exposure and cancer rates were conducted in the city of San Franclico In addition to cities in Austria，Germany，and Israel，dating as far back as the 1970 s ．All the studies shared similar findings：Iving within a certain proximity to a cell phone tower Increased the risk of cancer anywhere from two to 121 times depanding on what type of cencer was detected．

 Adiza Condessa Dode，PhD，one of tha engineering researchars as well es the coordinator of the Brazillan atudy，addresses those who are concerned sbout cell phone fower ：$二 厶 ⿻ *$ Brazll study does not atand alone，Dode elaboratas，＂These levels（EMFs），are already high and dangerous to human health．The closer you live to an antenne，the greater the contact with the electromagnetic field．＂

 The Brazilian－h \ddagger ：covers just one cily in Brazil．Residents of the United Stetes aro vulnereble too as America is home to hundreds of thousands of these radiation emilting towars．In the U．S．，with the prolferation of cell phones and the growing needs of cell phone users in recent years，there has been an explosion in cell towers．

